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Abstract.
senting planar outlines is described, consisting of a seeeénteen
“atomic” tokens, and based on a combined discretisatioarmgent
bearing, curvature, and the rate of change of curvature. rBypg
ing together strings of atomic tokens, higher-level priveitcurve
tokens can be specified (PCTs), that correspond to locatiseck
features of greater abstraction. We show how the primitofesx-

A new boundary-based scheme for qualitatively repre-2 PLANAR OUTLINES

We restrict our attention in the current analysis to simjidsed pla-
nar curves; we disregard here self-intersecting curves [@nnis-
cates) and “pathological” curves (e.g. those with full ottighfractal
structure, such as the Koch snowflake or a curve containingtris
of a graph likey = sin(1/z) as it approaches the origin). Our con-

isting boundary-based schemes may be defined as PCTs, and ha®ntion for curve traversal is that we go round in the dietivhich

associated token ordering graphs can be constructed thetlyi en-
code token-string syntax, based on the ordering conssraimtlicit
in a set of PCT specifications. Because of the atomic naturts of
building blocks, we propose that the scheme can be develioped
a general framework for constructing sets of task-specifinifives,
for use in application areas such as computer vision andtgtise
spatial reasoning.

1 INTRODUCTION

Although there exist representations of shape in such arfeeam-

puter science as graphics, computer vision and pattermgnéem,

little attention has been given to the problemgoflitativelyrepre-
senting shape. In subdomains of Al such as qualitativeapatison-
ing, symbolic schemes for describing shape are consideegerpble
to existing techniques, which are predominantly quangah kind.

This is because, in reasoning at high levels (which we magrcegs
akin to “commonsense” reasoning), there is a need to dehlemiti-

ties that are more abstract than those afforded by purelgtijative

models.

In this paper, we focus our attention on the qualitative @spn-
tation of planar curves, where we can distinguish betweesetiap-
proaches that arboundary-basednd those that areegion-based
Boundary-based schemes typically describe the type anémplent
of localised features round the bounding curve of a regiog. tee
codonprimitives of [7][12], the process-based primitives of [fie
structural encodings of [3], and the qualitative curvatypes of [5]).
In contrast, region-based schemes base their descriptivishiape
interior (e.g. axis-based techniques [1][2] and the R@Gpired ap-
proach of [4]). Here we concentrate on boundary-based sefiem
particular, those schemes which represent curves by stofigpkens
that correspond to local features encountered whilst aecignra-
versed; we call such representatidosal feature schemesdn this
paper, we derive a set afomic curve tokendased on tangent bear-
ing and curvature, which can be used to specify higher-lpxieti-
tive curve tokensn terms of which can be defined the primitives of
existing local feature schemes.
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2 The Region Connection Calculus, introduced in [10].

keepsdfigureto the left andgroundto the right, with an anticlockwise
change in tangent bearing corresponding to positive cureatnd
a clockwise change to negative curvature (see figure 1). Wiheen
go along a curve we may encounter points of tangent disaahtjn
where the bearing of the tangent suddenly jumps from onesv@alu
another. We refer to such pointskieksin the curve, corresponding
perceptually to angles and cusps.

curvature

GROUND

distance
along curve

Figure 1. An example outline and its curvature plot. Poirtsand B,

where the tangent is seen to rotate anticlockwise, indeategment of

positive curvature. In contrask; and F' indicate negative curvature. The
curve has two kinks(C' and D, where the curvature is undefined.

2.1 Token-string descriptions

The defining characteristic of a local feature scheme is ithdé-
scribes a curve by means of a string of tokehs, . . . t,,, that sym-
bolise features of the curve that are considered significkoken-
strings for outlines are interpreted as cyclic, i.e. theuearepre-
sented by the last token in the string is followed, round thiirge,
by the feature represented by the first token. It is more ateur
therefore, to think of such token-stringsrasgs. Note that, although
a given outline corresponds to a unique “token-ring”, theii be
(in general) a number of corresponding tolstrings e.g. an outline
consisting of the four distinct features A, B, C, and D (intthader),
is equally well described by any one of four strings: ABCD, B&
CDAB, and DABC. For the analysis that follows, we need not-con
cern ourselves further with the issue of string correspooefe

3 For a suitable method of deducing a single canonical tokeémgsfrom a
“token-ring” see [5§3.7].



3 DERIVATION OF ATOMIC CURVE TOKENS

In this section we derive a set of fundamental “atomic” binidd
blocks for qualitatively representing curves, such that ¢éssential
qualitative features of an outline’s curvature plot (ewyvature min-
ima/maxima, straight segments, points of inflection, pooftunde-
fined tangent-bearing/curvature) are associated witindidbkens.

3.1 Base-level tokens

We start by deriving a set dfase-levetokens, combining discretisa-
tions of tangent bearing and curvature. For curvature wehesdis-
crete quantity spacé+, 0, —, U}, since at any point along a curve
the curvature may be positive, zero, negative, or undefiRedtan-
gent bearing we use the spad@, U}: at kink points on a curve the
tangent is undefined), at all other points it is defined). At any
point p along a curve, then, we can think of tberve stateas being
specified by the paitb,, ¢, ), whereb,, ¢, are the qualitative val-
ues of the tangent bearing and curvaturg, aespectively. We obtain
our set of base-level tokens by considering, for each valid first
whether the composite state can hold over an interval oftpdai-
lowing an interval interpretation) and second whetheriitlsald at a
singular point (allowing a point interpretatidn)he table in figure 2
gives the set of six base-level toketiz; seT ok: there are thremter-

3.2 Token ordering graphs

Thetoken ordering grapfTOG) for BaseT ok is also shown in fig-
ure 2. The nodes of interval tokens are shown as squares and th
nodes of point tokens as circles. Conceptually, the purpbaelOG
is to provide a visual encoding of the ordering constraiotsfpartic-
ular set of tokens, by indicating which tokens can legitiehafollow
which other tokens in a string: an edge frofnto Y indicates that
XY is a legitimate substring. For olBaseT ok tokens, since each
node represents an allowable curve state, an alternatempietation
is that an edge fronX to Y indicates that, whilst traversing a curve,
the qualitative state representedynay hold immediately after the
qualitative state represented By, By reference to the graph we can
see, for example, that a point of undefined curvatlrg (may fol-
low an interval of positive curvaturd?§, and that the absence of an
arrow fromP to N indicates that it is not possible to have an interval
of positive curvaturalirectly followed by an interval of negative cur-
vaturé. There are two other points to note regarding the graph: (i)
U. maps to two nodes, thereby disallowing the token sequébic&
which is unrealisable, and (ii) the outer ring of the diagriamot an
edge, rather it is to be interpreted as a continuation of tdoekl,
itself.

By tracing a route through a TOG we can generate a valid token-
string that, if treated as non-cyclic, defines an equivaeriass of

val tokensrepresenting curve states that can persist over segnfents g stantiable open curves. It is important to note, howetvet when
curve @, Z, andN) and threepoint tokensrepresenting curve states nterpreted as cyclic such a string will not, in general, miefa class

that can hold at singular point# (U, andUy). Note that, by conven-
tion, interval tokens are underlined to distinguish theonfrpoint
tokens.

Tokens
b ¢ | Interval | Point
D + P
D0 z Z
D - N
DU Uc
Uvu Up

BaseTok = {E; Z; Z7N7 UC) Ub}

Figure 2. The six tokens oBaseT ok and their ordering graph.

4 Note that(U, U) is the only allowable pair witth, = U, since whenever
the tangent bearing is undefined at a point, the curvature aiss be un-
defined (because it is the first derivative of the tangentibgavith respect
to distance along the curve).

of instantiable outlines, since additional constrainterieure closure
are required. The precise nature of the constraints regjisii@n open
guestion and beyond the scope of this paper.

As an example of representation using the tokenBateT ok,
consider the three shapes shown in figure 3 and their comespp
token-string descriptions:

Shape | Description

circle P

square | ZU,ZU, ZU, Z Uy D
sausage| PZNZ

Figure 3. Describing a circle, a square, and a “sausage”.

3.3 Atomic tokens

Although the base-level set of curve tokens allows us toriesall
instances of the class of planar curves we are interestegpirsent-
ing, the discriminatory power it provides is limited. Foigtheason,
we extend our set dBaseT ok tokens by supplementing the existing
components of the curve state with the rate of change of tunesa
with distance along the curve']. In effect then, the curve state at
any pointp along a curve is now given by the trip{é,, c,, c;,). As
before, each composite state may be able to (i) persist oviater-
val of points, (ii) hold at a singular point, or (iii) both st over
an interval of pointand hold at a singular point. The table on the
left of figure 4 lists the fourteen valid composite combioas to-
gether with the seventeen tokens (state labels) we use tesent

5 Instead, as we would expect, we have to go fi@ro N via either a point
of undefined tangent bearingJ(), a point of undefined curvaturé{), a
point of inflection £), or an interval of zero curvatur&}.



Tokens
b ¢ ¢ | Interval | Point
D+ +| Pt
D+ 0 P p°
D+ —| P_
D+ U pY
D 0 + Z"
D0 O z° Z°
D0 — zZ-
DOU zY
D — +| Nt
D -0 N N©
D - —| NT
DU NY
DUU Uc
UUU Us

ATok = {P* P, P, P~ PY 2% 7% 7° 27, 2" N* ,N° N°,N_,NY, U, Up}

Figure 4. The seventeen tokens dfl'ok and their ordering graph.

the allowable interval and point interpretatibn€ollectively, these 4.1 Curve-state sequences
tokens make up the set afomic curve tokengor “atoms”) that we
refer to asAT ok, the ordering graph of which is also shown in fig-
ure 4. With the elements ofT ok we are able to distinguish between
curves which would be considered identical underseT ok, since
the atomic tokens afford a greater level of discriminataower.

A curve-state sequends defined as a valid string of atomic tokens
that traces a route throughiT'ok, with the consequence that curve-
state sequences can be used to define local curve featungsleSi
features may be defined by strings of length one, 2gdefines a
straight line segment. More elaborate features are defipetrings

of greater length. Given two sequenc8s,= aias . ..a; andS> =

3.3.1 Proofs biba .. .by, we say that:

We omit the proofs of correctness for the table and graph indig o 5, may be immediately followed I} (written as Sy ~ S,”) if
owing to space constraints. The table correctness is \abfigules either (i) there exists a routg as . . . azbibs . .. b, in ATok’, or
determining the non-allowable interpretations (the enuetys), and (ii) a. = by and there exists aroutgas . .. a,bs ... b, in ATok
exemplar curvature plots proving the realisability of theventeen (so if botha,, andb, are interval tokens we are effectively merging
atoms. The graph is constructed from a pair of adjacencgsdbhe them together, whereas if they are point tokens and arerireger
for interval-interval connections and one fanterval-point-interval to the same actual point, we are collapsing them into onentoke
connections) and verified by additional rules and exemplarature occurrence).

plots. The proofs are available upon request.

4.2 PCT specifications

4 PRIMITIVE CURVE TOKENS . . .
A PCTT is specified by a finite set of curve-state sequentes;
Using the atoms ofATok we can specify higher-levgbrimitive {S1,...,Sn}, such that:
curve tokengPCTs) capable of representing local curve features that
correspond to a succession of one or more curve states. $ha-es e EachS; is of the formic[id]tc, whereid is anidentity substring

tial difference between atomic and primitive tokens is traaitomic andlc andtc are leading and trailingontextsubstrings respec-

token is a label representing a particular curve state, @#sea prim- tively. The identity substring serves to identiywith occurrences

itive token is a label representing a set of feature-definirge-state of id, while lc andtc specify the preciseontextin which T is to

sequences be so identified.

6 Although there ar@ x 4 x 4 = 32 possible combinations @ c, and¢/, ' Note that it's not enough just to require a direct connecfiam a,, to
only the fourteen shown are valid because triples where U A (¢ # by, since it would not be correct to claim, for example, tZ&z° may

Uve #2U)orb=DAc=UAc #U areinvalid. immediately followZ?, because the sequenZ&zY 79 is unrealisable.



e The type ofT (whether it is an interval or point token) is deter- 6.1 The process-based primitives of Leyton
mined by its identity substrings: if eadH is a single point atom
thenT is a point token, whereas if eac¢li contains an interval
atom therl is an interval token.

Leyton [9] describes a scheme for modelling the changingesiud
developing “natural forms” founded on a set of continuatom bi-
furcation processes. These processes are inferred froprékence
As an example, consider the specification of a PCT that we tish of positive and negative curvature extrema round the coraban
identify with straight lines that are “kinklessly” boundégt arcs of  gbject’s silhouette. Shape descriptions consist of ssrisfgsymbols;

the same curvature sign: e there are five different symbols, one for zero-crossing {sqii) and

R 0 0 0 0 0 one for each of the four types of curvature extremudht andm ™

T'={ PLU[Z7]JUcP”, NTUC[ZTJUCN } ( } u denote maxima and minima of positive curvature respegtiaid
——

M~ andm™~ denote maxima and minima of negative curvature re-
5 ORDERING GRAPH CONSTRUCTION _spe_ctively. The PCT specifications for the fiye primit_ivee h_st_ed

in figure 5. Each of the four extremum primitives are idendfieth
Given a set of PCTs, we can construct an associated TOG that estationary points that occur within a particular context, @nM ™
codes the ordering constraints implicit in the PCT spedifics. A is defined as a positive stationary point that is precededhtiptar-
directed edge from a nod€ to a nodeY” indicates that, in a token- val of positive and increasing curvaturB(), and followed by an
string, the substringtY is allowable. The task of constructing an interval of positive but decreasing curvatufe—(). The 0 primitive
ordering graph from a set of PCTs requires (i) a mapping batwe is identified with two pointsZ~ andZ™, since a zero-crossing may
tokens and graph nodes to be found, and (ii) the connectietmggen  be from positive to negativer vice versa. For clarity, the two nodes

nodes to be determined. for 0 in the TOG are annotated by ordinals that indicate the associ
ated sequences. The graph edges (ordering constraintde@ved

5.1 Mapping tokens to graph nodes by applyingNCON to each ordered pair of nodes.

We have already seen, in the base-level and atomic token iO&s 6

it is sometimes necessary for tokens to map to more than afe no
In the case of thedATok TOG (figure 4), four of the point tokens

(PY, 2", N!, andU.) map to two graph nodes. In essence, more than ~ M = {PT[P°]P_ } @

one node will be required for a token if there exist dependency mT = {P_[P']PT }

relationships between the leading and trailing context¥ .ofn the M~ = { N*[N’]N" } e o
case ofPY, for example, if the preceding token (leading context) is ~ — [N [NNY ) 1 >
PY, then the succeeding token (trailing context) must no@heFor o= {_,[ T oot

each of the tokens that map to a single node, there are no spehd 0 = {PZ[Z7]NT], NT[ZT]PT } 6

dencies: leading and trailing contexts are independemegmother.
For TOGs constructed from base-level or atomic tokens,eadihg 6
and trailing contexts of a token are given by the curve stéigscan
hold before and after that token. For TOGs constructed framip
tive tokens, the contexts for a token are provided by theithepand

trailing context-substrings of its curve-state sequences Figure 5. The PCT specifications and TOG for the primitives of Leyton.

5.2 Connecting the nodes

In mapping a PCT to a set of nodes, we associate with each node .
a subset of the curve-state sequences of the PCT. The cimmect 6.2 The contour codons of Hoffman and Richards

rule that determines whether a directgd e‘dg.e should be dotled | ofman and Richards [7] present a setohtour codonsor repre-
tween two nodesX andY (not necessarily distinct), operates on the senting smooth planar curves for recognition purposesh Eadon

sequences associated withandY". Informally, we want to add @ 5 5 segment of curve bounded by curvature minima that austai
directed edge fronX toY” if, along a curve, the feature represented ;o1 one, or two points of zero curvature. Four codons afieett
by the sequences &f may directly follow the feature represented by 5 symbolised by the tokeiis 17, 1, and2; contours of object
the sequences of . More formally, then, given a set of graph nodes gjjhoyettes are described by strings of these tokens. VWechasCT
N, we add a directed edge from a nodlg to a nodelV, solong as  gpecifications (see figure 6) on the set of codons given intftjin-
the following node connection condition holds: cludes a subdivision of the codon typéto 0" and0 ™, bringing the

NCON: (3S; € N,,S; € N,)(Si ~ S;) total number of codons to fifeThe codon representation scheme is
motivated by a theory regarding the perception of figuraigdore-
6 PCT ANALYSIS OF EXISTING LOCAL versal: the part-defining boundary points of a contour astyated
FEATURE SCHEMES to be negative curvature minima, the proposed theory béiagthe

reason why a curve looks different when figure and ground exe r
We may refer to a representation scheme for describing ptamees  versed is that the change in the underlying codon desonipéisults
as PCT-based if its descriptions consist of strings of diveicurve  in a different set of “parts” being perceived
tokens, i.e. if each curve feature it ascribes a token to eahuilt 3 - — -

PCT from the atoms iHTok. In this section we show how '_I'hey also include a straight-line type for c_ompl(_etgneslse(lad o, since
as a i ' ' it can be thought of as a curve segment with infinitely manytsoof zero
the primitives of two well-known schemes from the literagan be curvature).
specified and their associated ordering graphs constructed 9 See [8] for further discussion of part segmentation.
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0% = {P[PTPP_IP" } \-
0~ = { NYINFNONJNC }
1+ = {PYPTPP-Z NJN° }
17 = {N°[N*Z+P+POP|P® }
2 = {N°[N*Z*P*P'P_Z N_|N°} i

)

Figure 6. The PCT specifications and TOG for Hoffman and Richards’
contour codons.

7 SUMMARY

We began by deriving a set of six base-level curve tokens faom
composite discretisation of tangent bearing and curvatordistin-
guishing just between points of defined and undefined tarugant
ing, we ensured invariance with respect to rotation, tetiest, and
uniform scaling. By supplementing the curve state with te of
change of curvature, we were able to derive a set of quakitatates
with significantly more discriminatory power: the sevemte¢omic
curve tokens ofAT ok. The atoms ofdAT ok can be used, in turn, to
specify the semantics of PCTs: higher-level primitive eutekens
capable of representing more abstract local curve featWesout-
lined a procedure by which ordering graphs can be constiubts
visually encode the ordering constraints implicit in a $&2GT spec-
ifications. Finally, we demonstrated that primitives ofstixig local

feature schemes can be defined as PCTSs, by providing PCTispeci

cations and associated ordering graphs for two such sch&zoras
the literature.

8 CONCLUSIONS AND FURTHER WORK

By combining discretisations of tangent bearing, cungtand the
rate of change of curvature, we can derive a set of “atomikéns
that encode the important features of an outline’s cureaplot,
including kinks (points that correspond perceptually tglas and
cusps). Such a set of tokens provides us with building blémkgual-
itatively representing curves that are, in a sense, moregimental
than the primitives of existing local feature schemes, dsd more
general, since most schemes restrict their scope of repietsm to
kinklesscurves with continuously differentiable curvature plots.

We see the theory presented here as having two main purposes:

(i) to serve as a theoretical basis for a unifying theory afrimtary-
based local feature schemes, and (ii) to serve as a poinpeftee
from which a framework for constructing sets of task-spegifimi-

tives can be developed, for use in application areas sucbraguter
vision and qualitative spatial reasoning. Ongoing workeamig a uni-
fying theory currently includes the PCT analysis of othdresnes in
the literature: the inclusion of cusps in Leyton’s theor}; [gosin’s
extended set of codons [12], and Galton and Meathrel’s Guiak

curvature types [5].
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