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Abstract 2 Deriving the hierarchy of atomic tokens

At each point on a curve, the tangent to the curve at the point
is either defined or undefined. The rate of change of the tan-
gent bearing with distance along a curve gives us curvature
(the first derivative of tangent bearing with respect to arc-
length). We can also consider the rate of change of curvature
(¢), which is the second derivative of tangent bearing. For
each curve we can think of there being an infinite number of
associated plots. Our hierarchy of descriptors is based on a
discretisation of and its derivatives. For tangent bearing we
are interested in whethéris defined O) or undefined (),
so we use the quantity spa¢®, U}. Points where the tan-
gent bearing is undefined correspond to angles and cusps, and
may be referred to dank points For all of the derivatives of
tangent bearing (i.ec, ¢, ¢”, ...), we use the quantity space
1 Introduction {+, 0,—,U}, _since a derivative may be positive, zero, nega-
tive, or undefined.
In the development of conceptual tools for spatial represen
tion and reasoning, the category of shape has proved to be ofel  Curve states
of the most problematic areas. Some important earlier workAssociated with each poin® on a curve is a sequence of
representative of the boundary-based approach to shape, gaalitative values, representirdg ¢, ¢’, etc. Thecomplete
exemplified by the contour codons of Hoffman and Richardscurve stateat P corresponds to an infinite sequence of values.
[1987 and the extremum primitives of Leytdt98d. These We write 9z to denote théith component of the curve state
two approaches, although differing in motivation and detai z. Not all component sequences give rise to valid curve states
both used the idea of characterising the shape of an outlinga component has a value other thanthen the value of the
by means of a string of tokens, recording salient curvaturenext component is unconstrained. If, however, a component
based features encountered during a traversal of the eutlindoeshave the valué/, then all subsequent components must
A more recent approach, using yet another set of primitivesalso beU. More formally, a curve state must satisfy the
is that of[Galton and Meathrel, 1999In [Meathrel and Gal-  following constraint:
ton, 2000, we attgmpted to define the boundary-_based ap- (VE) (%2 = U = 0" la = U)
proach to shape in a more general and systematic way. By
considering variations in curvature as a starting pointdere A partial curve stateat P is any initialn-tuple of the com-
rived two sets ofatomic tokengor describing curves, and plete curve state. So if = (D, +), for example, then
presentedoken ordering graphgor verifying the syntax of 9'z = D, 3’z = +, andz is a partial curve state that is
atomic curve descriptions. assigned to points on a curve where the tangent bearing is
The present paper extends the work describéMizathrel ~ defined and the curvature is positive.
and Galton, 20000n three significant respects: (i) by system-  We refer to a partial curve state withcomponents as a
atically investigating the structure of sets of atomic aimve-  |eveln state. Given the complete set of states for some level
based tokens, resulting in an unbounded hierarchy of atomik, it is straightforward to generate the set of states forlleve
tokens, (ii) by incorporating kink points (angles and c)sps k+1. Each stater, at levelk, generates a set of leveh1
into the framework of tokens, and (iii) by providing a pair StatessS, as follows (wherg) = 9" z):
of compatibility matricesand an algorithm, for generating { {(..,y,U)} if y=U
S —

In this paper we extend previous work on the
boundary-based approach to describing shape, by
deriving an unbounded hierarchy of “atomic”
shape descriptors (called tokens) based on tangent
bearing and its successive derivatives, and incor-
porating angle and cusp curve features. Both open
and closed curves have token-string descriptions
at all levels in the hierarchy. We provide a pair
of compatibility matrices for generating transition
tables for any level, from which level-specific to-
ken ordering graphs that encode basic string syn-
tax can be systematically constructed.

transition tables for any level in the hierarchy, from which {0 y,+), (g, 0), otherwise
level-specific token ordering graphs can be constructed. .oy =), (g, U}



There are two partial curve states with one componentfor level 3 are as follows:

(D) and(U). From these two states we can generate the five (D,+,+) : D++ (D,0,U) : DOU
states .of level 2 and then, from those, the fourteen states ofip | o) . D+0,D+0 (D,—,+): D+
level 3: (D,+,-): Dt (D,—,0) : DO,D-0
(D) (D,+), (D,0), (D,~), (D,U) (D.+,U): D+U (D, = —): Do
(U) . (U,U) (D,0,+) : DO+ (D,—,U): DU
(D,0,0) : DOO,DOO (D.U,U): DW
(D,+): (D,+,+). (D.+,0), (D, +,-), (D, +,U) (D,0,-) = DO- (U, 0,0) U
(D,0) : (D,0,+),(D,0,0), (D,0, ), (D,0,U) The first four levels of the hierarchy of atomic tokens are
(D,—): (D,—,+),(D,—,0),(D,—,—),(D,—,U) shown in Figure 1. Each atom in the hierarchy (except the
(D,U): (D,U,U) atomsD andU at level 1) is a child of a single parent atom at
(U.U) - (U,U,U) the previous level, i.e., each atom at leka$ derivable from

. . . one, and only one, atom at leviel-1. We call parent atoms
For each point on a curve we can assign a partial CUVg, o:'have more than one chitkpansiveand those with only
state ofk components, so we could theoretlcally' represent %ne child non-expansive An interval atom is expansiviéf
curve by providing a mapping between curve points and.pgrﬁs last component is either’ or * —’, otherwise it is non-
tial curve states. However, such a mapping would be mf'mteexpansive A point atom is expansiﬁl'aits last component is
and therefore qf no practical use. Because our state compfyey < otHerWise it is non-expansive. At level 1, then, there
nents take qualitative values, however, certain statesmaay is just 6ne non-expansive atof, which propagat;as thr;)ugh
sist over intervals of curve and, therefore, support maggpin the hierarchy aslU, UUU, and solon The other level-1 atom
that are finite. A curve state may have an interaadl/or a ' ! ' !

o2 . . . . D, expands into five atoms at level 2; two of which are non-
pointinterpretation. A state that has an interval intetiadien D, expands into five atoms at leve 00 chare

: ; Xpansiv n )
may persist over an interval of curve, and a state that has &bans eDQ andby

a p . . . .

W F i . ) ) Any atom is either an interval (I) or a point (P), and either
point interpretation may hold at a single curve point, witho : _ : o -
holding on any interval adjoining that point. Attlomic token expansive (E) or non-expansive (N), giving us four kinds of

identif Heular int tali : tial curvatet atoms: IE, IN, PE, and PN. Each |IE atom yields five children:
laentifies a parficular interpretation ot a partial Cunee two IE atoms, one IN atom, one PE atom, and one PN atom.

Each PE atom yields four children: three PE atoms and one
PN atom. The non-expansive atoms, IN and PN, yield a single
For each set of level-curve states, we obtain a correspond-IN atom and a single PN atom, respectively.

ing set of levelk atomic tokens by considering the allowable  The recursive equations for calculating the numbers of
interpretations of each state. A state may support an iaterv each kind of atom at leve!, and the actual figures for lev-
interpretation, a point interpretation, or both. An atorttie  els 1 to 6, are as follows:

ken (or “atom”) is a particular interpretation of a partiaul

2.2 Interval and point interpretation

state, and is identified bysagnatureconsisting of a sequence IE(k) = 2xIE(k—1)
of qualitative component values. A signature that is under- IN(k) = IN(k—1)+IE(k—1)
lined indicates an interval interpretation; a non-unaedi PE(k) = 3xPHEE-1)+IE(E—-1)
signature indicates a point interpretation. The a for PN(k) = PN(k—1)+PEk—1)+IE(k—1)
example, is identified with the interval interpretation bét
state(D, +), and the atonD+- 0 is identified with the point Total(k) = IE(k) + IN(k) + PE(k) + PN(k)
interpretation of the stat@D, +, —, 0).

A curve state may hold at a single poifitone of its com- Level | [IE IN PE PN] Total

ponents is either zero or undefined. This is because if all
components are defined, then all of them are continuous, and 2 1 1 2 6
hence the valuest’ and ‘-’ can only hold over intervals. A 4 3 5 5 17

1 1 0 0 1 2

2

3
curve state may persist over an interifalnone of its com- ) 3 7 19 14 18

5

6

ponents are undefined and, whenever a component has the 16 15 65 41| 137
value zero, the next component also has the value zero. The 39 31 211 122 396
following predicates, therefore, can be used to deternfiae t
interpretations that are supported by a curve state:

point-interp(z) <+ (3k)(0%z = U v 0%z = 0) 24 Atom labelling
interval-interp(z) < Annotating curves with signatures and describing curvéls wi
(=3k)(0%z = U) A (VE)(0%2 = 0 — 9FFlz = 0) strings of signatures is not ideal. Therefore, for notatlon
convenience, we assign each atom at level two or above a
2.3 Atomic hierarchy suitable descriptive label, according to the following wem-
For each set of partial curve states (each level) we can ese thion": the label begins withP”, *Z", *N", or *U’, depending
predicategoint-interp andinterval-interp to obtain the cor- At level 1,Dis given the labelD’ and Uis given the labelUy’,

responding set of atoms. The partial curve states and atomghere b’ signifies that the tangent bearing component is undefined.
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Figure 1: The first four levels of the atomic hierarchy

on whether the curvature component is positive, zero, negawith a symbol indicating curve type, both open and closed
tive, or undefined. The remaining componeantsd{’,...)are  curves can be represented. We use for open curves and
denoted by a superscripted string, whose elements aresvalug))’ for closed ones. Our convention for relating changes in
from the se{+,0, —, U}. The label is underlined if the atom tangent bearing to curvature is that a clockwise changein ta
it is symbolising is an interval. To distinguish between thegent bearing indicates positive curvature, while an amtic!

two distinct kinds of atoms where the curvature component isvise change indicates negative curvature. Thus positive cu
U, we use the labelJy,’ for atoms where the tangent bearing vature is associated with convex curve segments and negativ
component is als&/, and U’ for atoms where the tangent curvature with concave segments. A curve can be traversed
bearing isD. Using the new notation, the first three sets ofin one of two directions. For a closed curve, the direction is
atomic tokens are written as follows: that which preserves the intended figure/ground relatipnsh
For open curves, consistent description dictates that éne o

Level1: D, Us the two directions is chosen as the “default” one.
Level2: P,Z,Z,N,Uc, Uy Shown in Figure 2 are two curves that have been annotated
Level3: P+ P° PO P, PY z+ 7070 7, 7Y N*t, with level-3 atoms. Note theR® refers to a convex circular
NO NO N—,NY, U, Uy arc (constant positive curvature over an interval), wheRfa
) ) refers to a positive curvature extremum; and analogougly wi
25 Kink points N° andN°. Given a closed curve there will be, in general, a

At each level in the hierarchy there exists a single kinkapoi number of different token strings that describe it. However
atom labelledJ,, each component of which takes the valueWe can easily transform one string into another by cychcall
U. Such atoms represent points on a curve where the tange#fifting it by a certain amount. In this sense, all of thengtsi
bearing (and therefore all of its derivatives) are undefinedmay be considered equivalent. Any one of sixteen level-3
and correspond perceptually to angles and cusps. Clealy, wstrings may be used to describe the closed curve in Figure 2,
would like to be able to distinguish between different kindstwo of which are obtained by either starting at the or start-

of kink points, otherwise we are losing important curve info ing at the uppermogt’:

ma_ltion. In particglar, the two most re'levar!t aspects of & kin OU-P*POP-Z~ N~ N°N*+ U, Z°U.P° U Z°U_ P°

point we would like to preserve are its orientation (whether 0 0 0 o 50 D 7 N— MO N4

it is inward-pointing or outward-pointing) and its typee.i. OZ2UcPPU- 22U PPUPTPPPZZ7 N NPNT U,
whether it is an angle or a cusp. In order to distinguish be- The importance of specifying a particular direction for
tween the different kinds of kink points, we introduce the open curves is illustrated by the open curve in Figure 2, eher
following kink tokensinto our representationty. andU-.  a reversal of direction yields the descriptionZ®U_ N—.

(for inward and outward pointing angles, respectively)d an Note, however, that under a system where “mirror-reflected”
U~ andU,. (for inward and outward pointing cusps, respec-curves are considered equivalent, the direction chosen for
tively). These tokens have the same statudi@asn that they  traversal is unimportant.

can be thought of as appearing at every level in the hierarchy

Note, however, that kink tokens are rabmig since the pro- 3.1 Levesof description

cess by which the atomic tokens are derived does not produce L .
them. Instead, we need to introduce them explicitly. A curve has a description at every atomic level. The most

coarse-grained description is at level 1, where only thmato

: S D andU, are available. By moving down the hierarchy (and
3 Atomic description incorporating more qualitative components) we get finer-
A curve is described by a string of atomic tokens taken fromgrained descriptions that reflect the increase in disciahoiry

a particular level in the hierarchy. By prefixing descripgo  power that extra components provide.



p— the squarek = 2; descriptions at levels > 2 are unneces-

sary, leading to no increase in “qualitative precision”.r Bo

circle, we need to go to level 3 to achieve this. In this sense,

20 a circle might be regarded as a more complex shape than a
square.

Us

4 Token ordering graphs

A curve is described by stringing together those atoms that
correspond to the “atomic” qualitative boundary featurés o
the curve. Clearly, some features can occur together and som
cannot. Atoken ordering graph (TOG), of the kind introduced
in [Meathrel and Galton, 2000encodes the constraints that
Given the description of a curve at some lekewe can  determine the basic string syntax for a set of atoms. In this
derive all of the coarser-grained descriptions for the eurv Section, we show how the transition tables that underlié suc
i.e., from the description at level 1 through to the desaipt ~graphs can be systematically constructed for each levakof t
at levelk—1. If X denotes the description of a curggat  atomic hierarchy.
level £ > 1, then the following straightforward three-step ~ Given a set of atoms, a TOG is a way of pictorially repre-
procedure yields the description©fat levelk —1: senting the two complementary transition tables that $peci
. which atoms may follow which other atoms in a string. The
1. Replace each atom &f with its parent. interval-interval (“I-I") table tells us which interval atoms
2. lteratively replace substrings of the form (wherezis  can follow which other interval atoms. Theterval-point-
a single atom) with:, until there are no more substrings interval (*I-P-I") table tells us which point atoms can occur
of the formzz. in between each pair of interval atoms. It is the constructio

3. 1f Cis a closed curve. and the string resulting from theof these tables, then, that we are primarily interested re T
' ’ 9 9 I-I and I-P-I tables for level 2 are given later, in Figure 4.

previous step is of length greater than two, and begins
and ends with atoms of the same type, then remove thg 1 Compatibility matrices
last atom in the string.

Figure 2: Example curves labelled with level-3 atoms

We make use of twaompatibility matricesvhen construct-
By applying the procedure to the ellipse shown in Figure 3ing I-I and I-P-1 tables. First, consider the constructidn o
we get the level-2 descriptid® P, by re-applying the proce- an |-l table for a given level in the hierarchy. Each cell
dure withO P as input, we get the most coarse-grained de{row z, columny) in an I-I table contains a tickf the in-
scription for an ellipseO D. terval atomy can directly follow the interval atom. Given
interval atomse andy, at leveln, we can determine whether
ot noty can directly followz by making use of the matrix
given in Table 1. The matrix tells us whether or not #ib
gualitative components of the atomsindy are compatible.

oty =+ oty =0 oy = —
, _ . o =+ T oF e = — 1
Figure 3: An ellipse described at level 3 Fr—0 |0y — 1 T PT—
Although we can derive all coarser-grained descriptions O'x =~ 1 "=+ T
for a curve given its description at leviel> 1, it is not possi-
ble, in general, to derive any of its finer-grained desavipsi o _
The occasion when is possible to derive a finer-grained de- Table 1: Compatibility matrix for I-1 tables
scription is when the description given consists entirdly o
atoms that are non-expansive, in which cakdiner-grained Thekth component of is compatible with thé&ith compo-

descriptions are accessible. Consider the description of maent ofz, andcompatible(k, y, z) holds,iff the condition in
square at level 20Z U~ ZU- ZU- ZU-. Because both the corresponding cell is satisfied.df z andd*y are of op-

Z andU- are non-expansive, we can get the “finer-grained”posing signs then they are definitely incompatible (sigdifie
description at level 3 by replacing each atom in the stringoy a L in the appropriate cell), because a derivative cannot
with its single child atom. The level-5 description, for ex- change from positive to negative (or vice versa) without tak
ample, isO Z°°° Uy, 7% U, 7%y 7% U.. Another ex- ing the value) or U in between. If an interval over which
ample would be a shape that has the level-3 descripti®®  9* has the valud is followed immediately by an interval
(i.e., a convex circular arc segment). For most shapes itdvou over whichd* is positive, then in the latter interval it must
appear that there exists some minimal valué efich thatits initially be increasing, i.e.9**' must be positive. This ex-
description at levet contains only non-expansive atoms. For plains the entry for cel(0*z = 0,0y = +). Analogous



Oy =+ o'y =0 'y = —

Fp=+Vvop=UV |dp=Uv Fp=UV
o=+ |0 p=0n0"""z=— | (@p=0A0Te==)| (@P=0r0T2r=-
ARy = 4) ANy =)

dFp=Uv ’p=UV
Oz =0 | (@p=0A0"Ty=14) *lp=U (@*p=0A0""y=-)
Fp=UV Fp=UvV Fp=—vVvVop=Uv
dr=—|(@p=0r0""2=4 | (@p=0r0r=4)| (@'p=0r0""z=1+
AOFF Yy = 4) ANy =)

Table 2: Compatibility matrix for I-P-1 tables

explanations hold for the other non-trivial entries in thble.  In other words, the underlying curve statepomust be dis-
Given interval atoms: andy at leveln, then,y can directly  tinct from the underlying curve states ofandy, and the

follow z iff can-follow(y, ) holds: qualitative components gf must be compatible with those

of x andy. As before, conditions that refer to “unavailable”

can-follow(y, z) <» components are automatically satisfied. To illustrate vedl sh
y#x A (Vk)(1 <k <n— compatible(k,y, ) ) use the table to determine which point atoms can come be-

o tweenz = P~ andy = P°. We haved’z = 9%y = + and
In other words,y andz must be distinct interval atoms (to g3, _ —, 8%y = 0. We want to know the possible values for

ensure an underlying state change), and the components 9fp, 82p andd®p. Since the definition ofan-occur-between

y must be compatible with the componentsiofNote that, o, ses no constraints on the first level componefitscan
whenever a condition in the matrix refers to an “unavailable |, "citherD or /. Fork — 2. the top-left cell of the matrix

component of an atom, i.e., wherk+1 > n, the conditioris states thab®p may be any of+, U, and0, but0 is ruled out
satisfied because the valued¥f! a is unconstrained (since it because it rgquires thafr — N a’ndag " < which con-

is not specified). As an example, consider the level-3 iaterv tradictsd®y = 0. Moving onitok —3 wg CBI’IS;JH the middle
atomsP* andP?, and whetheP° can directly followP*. We cell in theybottdm row of the ﬁ1atri;< We see thitp may
start by comparing theecondcomponent of each atom, since ¢ githerts or 0, the additional constraints on the latter value
all interval atoms have the same valug) for their first com- being irrelevant in the present casefasl > 3. Remember-

P p+ 2 po . . :
ponent. Because both’ P* and” P take the value+', "ot if any component i, all subsequent components

the compatibility condition isT, and therefore satisfied. The ., it o7 to0, we derive the following candidate component
condition of compatibility for the final component pair eval

uates to?* P+ = —, sinced® Pt = + andd®> P° = 0. The sequences fop.

condition is satisfied becaug” has no fourth component (U,U,U),(D,+,U),{D,+,0),(D,U,U)

(P* is a generalisation of a set of child atoms that includes

the level-4 atonP+-). corresponding to the level-3 atorbg, PY, P°, andU,. The
Next, consider the construction of an I-P-I table for a givenfirst condition ofcan-occur-between rules outP?, as its un-

table contains a list of point atoms that can occur in betwee§onclude that only the point atortl, EU' andU. can occur
interval atoms: andy. For I-P-I tables, we make use of the in between the interval atonis_ andP”.

compatibility matrix given in Table 2, which differs fromeh .

matrix for I-l tables in that the notion of compatibility con 42 Transition tables
cernsthree components rather than just two. Given a pointThe set of atoms at levdl is the union of a set of interval
atomp and interval atoms: andy, at leveln, the compo- atoms,Z;, and a set of point atom$},, e.g., at level 2 we
nentd*p is compatible with the component§z andd*y,  haveZ, = {P,Z,N} andP, = {Z,U.,Up}. The transi-
andcompatible(k, p, z, y) holds,iff the condition in the cor- tion tables at levek, I-I; and I-P-}, each containZy |* cells,
responding cell is satisfied. A point atgmthen, can occur one for each ordered pair of interval atoms. We refer to a
in between two interval atomsandy (afterxz and before)) cell (row z, columny) in the I-l; and I-P-}, tables by writing

iff can-occur-between(p, z,y) holds: I-1x(x,y) and I-P-k(z,y), respectively. The following algo-
rithm populates the I-1 and I-P-1 tables for any le¥eb 1 in
can-occur-between(p, z,y) < the hierarchy:

(Ja,b < n)(9*p # 8z A 3"p# 3y) — _ _
A (VE)(1 < k < n — compatible(k,p,z,y)) ’Atlevel 1, I-:(D, D) is empty and I-P-I(D, D) containsUs.



for each (z,y) € I x Z; do @

if can-follow(y, z) then |-l (z,y) + /; @

for each p € P}, do (0)

if can-occur-between(p, z, y) then addp to I-P-I; (z, y); i (02)

Owing to space constraints, only the I-1 and I-P-| transitio " £ N
tables for level 2 are given here (see Figure 4). As described /l\
in §2.5, we can substitute the single kink-point atomwith U
a set of kink tokens{U_, U, U_, U, }. In order to do this, BN =
we need to replace eadh, in cell (z,y) of the I-P-I table W,
with the correct subset of kink tokens, as follows: (i) regla @
Uy, with U< andU-,, and (i) addU if 8%z = + or 9%y = +, AN
and addU.. if 9%z = — or 8%y = —, i.e., inward-pointing Y,
cusps must be flanked by an interval of positive curvature and @

outward-pointing cusps by an interval of negative cunatur
(cf. [Galton and Meathrel, 199§3.2]).
Figure 5: Level-2 TOG with distinct angle and cusp tokens

E Z N E z N 5 Conclusion
P v P 6 U. | Us U 6 U We have generalised the work described feathrel and
b b Galton, 2000, by deriving an unbounded hierarchy of atomic
z| v Z|UUc| Uy | UpUe tokens and incorporating distinct kink tokens for inward an
outward pointing angles and cusps. Both open and closed
N v N | Z U, U z curves have qualitative descriptions, consisting of g&iof
- — | Up Uc © ] Us Uc atoms, at every level of the hierarchy, with the most coarse-

grained description at level 1. Higher-numbered levelgngh
more qualitative components are included, possess greater
discriminatory power and allow for finer-grained descrip-
tions. We showed how, for each level of the hierarchy, I-l and
I-P-1 transition tables, encoding the ordering constsafot

4.3 Graph correspondence the set of atoms at that level, c%n be constrgcted by a simple
A TOG consists of nodes representing atomic tokens angigorithm that makes use of a pair of compatibility matrices
edges representing token ordering constraints. The nodes frrom a pair of I-1 and I-P-I tables, a corresponding TOG can
interval atoms are shown as rectangles and those for poie constructed that visually encodes their constraints.

atoms as circles. Any path through a TOG, which starts |n[Meathrel and Galton, 2090we showed how sequences
and finishes at a node representing an interval atom, yieldsf atomic tokens (with “contexts”) can be used to model
a syntactically valid string of tokens that is instantiab®  poundary-based schemes such as those of Lég@8H and

an open curve and that may or may not be instantiable as |goffman and Richard§1984. We believe the theory pre-
closed curve. A TOG that encodes the ordering constraintsented here provides an adequate basis for construatiyg

for the atoms of level 2 (incorporating the set of kink tokens houndary-based scheme of qualitative shape descriptors.
is shown in Figure 5. We have seen that we can construct |-

and |-P-I tables for any level of the atomic hierarchy. FromRefer ences

the tables for a particular level, a corresponding TOG can b

constructed that visually encodes the constraints givethéy fGaIto;}ﬁar;_d éwgattlhrzgl’t#sg’?' | r? ? Itgr; aﬁng cPR6 cMci‘aig;ﬁll
table contents. We do not here provide an algorithm for con- S%AII v 10%1|—1066 l\%br an .Kaufm’ann.rlnc: 1999
structing TOGs from I-I and I-P-I tables; details relevamt t » PP- ) ' 9 T '
such an algorithm may be found [Meathrel and Galton, [Hoffman and Richards, 1982D. D. Hoffman and W. A.
2000,§5]. The TOG in Figure 5, then, corresponds to the I-1 ~ Richards. Representing smooth plane curves for recog-
and I-P-I tables given in Figure 4 (with, replaced with the nition: implications for figure-ground reversal. Rvoc. of
kink tokens, as described at the end§df2). The TOGs in AAAI-82 pp. 5-8, 1982.

Figures 2 and 4 ofMeathrel and Galton, 200@orrespond, [Leyton, 1983 Michael Leyton. A process-grammar for
respectively, to the I-l and I-P-I tables of levels 2 and 3h&f t shape Artificial Intelligence 34:213—-247, 1988.

atomic hierarch, [Meathrel and Galton, 2000R. Meathrel and A. Galton.
Qualitative representation of planar outlines. In W. Horn,
with Uy, notreplaced by the more-specific kink tokens. ed.,Proc. of 14th ECAIlpp. 224-228. |0S Press, 2000.

Figure 4: The I-l and I-P-I tables for level 2



