
A GENERAL THEORY OF BOUNDARY-BASED
QUALITATIVE REPRESENTATION OF

TWO-DIMENSIONAL SHAPE

Richard Charles Meathrel

Submitted by Richard Charles Meathrel to the University of Exeter as a

thesis for the degree of Doctor of Philosophy in Computer Science in the

Faculty of Science.

September 2001

This thesis is available for Library use on the understanding that it is

copyright material and that no quotation from the thesis may be pub-

lished without proper acknowledgement.

I certify that all material in this thesis which is not my own work has

been identified and that no material is included for which a degree has

previously been conferred upon me.

Richard Charles Meathrel

Abstract

Shape is an important spatial attribute that features in much of our everyday reasoning

and intelligent action. Consequently, representations of shape are important in the domain

of Artificial Intelligence (AI). For the kind of commonsense reasoning that AI is interested

in, it is necessary to represent shape in qualitative terms, using higher-level symbolic rep-

resentations in preference to (or in addition to) low-level numerical data. Schemes for rep-

resenting shape are most commonly categorised as either region-based or boundary-based.

In this thesis, we focus our attention on the boundary-based approach to the qualitative

representation of two-dimensional shape.

Existing boundary-based schemes exhibit a number of common features. They all use

high-level descriptors which are ultimately analysable in terms of qualitative curvature

variation. The central claim of this thesis is that such an analysis provides an adequate

theoretical underpinning for the boundary-based approach, leading to a theory which pro-

vides a unifying account of, and generalises, existing boundary-based schemes.

Our analysis results in an unbounded hierarchy of atomic tokens, each of which corre-

sponds to a particular qualitative composition of tangent bearing and zero or more of its

derivatives. A shape has a token-string description at each level of the hierarchy and each

level provides a conceptual granularity that is finer than the previous level and coarser

than the next. Strings of atomic tokens give rise to complex tokens capable of represent-

ing localised curve features of greater abstraction. A local-feature scheme is defined as a set

of complex tokens that supports token-string description. Given a local-feature scheme, a

token-ordering graph can be constructed that visually encodes its token-ordering constraints.

The atomic and complex tokens, local-feature schemes, and token-ordering graphs consti-

tute a general theory of the boundary-based approach, which we call qualitative boundary

theory (QBT). We apply QBT by showing that each of the existing boundary-based schemes

is definable as a local-feature scheme.

2

Acknowledgements

First, and most importantly, I would like to thank Antony Galton for supervising my

research and providing encouragement and support when it was needed. I greatly appre-

ciate the guidance and time that Antony has given me over the last four years. Secondly,

I would like to thank the other three members of my thesis committee, whose comments

and advice I always found to be considered and useful. They are Derek Partridge, Jamie

Henderson, and Helen Gaylard.

During my years at Exeter I have had the pleasure of meeting and getting to know

many new people, for this I am grateful. In the four years that I have been undertaking

my doctoral research, there are four people who I would like to thank by name, for their

presence, friendship, and advice. They are Robert Bishop, Michael Grivas, Gareth Penny,

and Julia Wallace.

3

� Chapter 3 includes material presented at the 16th International Joint Conference on Ar-

tificial Intelligence (IJCAI’99) in Stockholm, Sweden (Galton & Meathrel 1999).

� An initial version of QBT was presented at the 14th European Conference on Artificial

Intelligence (ECAI2000) in Berlin, Germany (Meathrel & Galton 2000).1

� Chapter 4 includes material presented at the 17th International Joint Conference on Ar-

tificial Intelligence (IJCAI’01) in Seattle, USA (Meathrel & Galton 2001).

1The acronym QBT was not used in the paper. The ”primitive curve tokens” (PCTs) referred to in the paper
have evolved into the ”complex tokens” described in Chapter 5 of this thesis. The paper also contains the first
two levels of the atomic hierarchy (cf. Chapter 4), the notion of a ”local-feature scheme” (cf. Chapter 6), and a
simple method for constructing token-ordering graphs (cf. Chapter 7).

4

Contents

1 Introduction 17

1.1 Background . 17

1.1.1 The nature of shape . 17

1.1.2 Representing shape . 19

1.2 Thesis statement . 21

1.3 Structure of the thesis . 23

2 Existing schemes 25

2.1 Overview of shape representation . 25

2.1.1 Application areas for qualitative schemes 27

2.1.2 Aspects of qualitative schemes . 29

2.2 Region-based schemes . 32

2.2.1 Symmetry-based representations . 32

2.2.2 Cohn’s RCC-inspired approach . 34

2.3 Boundary-based schemes . 38

2.3.1 Contour codons . 39

2.3.2 Extremum primitives . 43

2.3.3 Structural codings . 51

2.4 Comparisons . 52

3 Qualitative outline theory 56

5

3.1 Curvature types . 56

3.2 Describing outlines . 58

3.2.1 Traversal direction and qualitative symmetry 59

3.2.2 Canonical form of a description . 61

3.2.3 Outline tracing . 61

3.2.4 Ordering and closure constraints . 62

3.3 Outline classes . 63

3.3.1 Sublanguages and subgrammars . 64

3.4 Quantitative considerations . 66

3.5 Summary and comparisons . 68

4 The atomic tokens 71

4.1 Deriving the hierarchy of atomic tokens . 71

4.1.1 Curve states . 72

4.1.2 Interval and point interpretation . 73

4.1.3 Atomic hierarchy . 74

4.1.4 Labelling of the atomic tokens . 76

4.1.5 Kink tokens . 76

4.2 String descriptions . 77

4.2.1 Levels of description . 78

4.3 Token-ordering graphs . 80

4.3.1 Compatibility matrices . 80

4.3.2 Transition tables . 83

4.3.3 Graph correspondence . 87

4.3.4 String syntax . 90

4.4 Summary . 92

5 Complex tokens 93

5.1 Motivation . 93

6

5.2 Definition of a complex token . 94

5.2.1 Example tokens . 95

5.2.2 Specification levels . 95

5.2.3 Regular expressions and grammars 97

5.3 Token types . 99

5.3.1 Information loss and preservation . 100

5.3.2 Non-regular features . 101

5.3.3 Feature hierarchies . 101

5.4 Token fitting . 103

5.4.1 Triple matching . 103

5.4.2 Triple elimination . 106

5.4.3 Token-string descriptions . 108

5.5 Triple relationships . 110

5.5.1 Bar-diagram notation . 110

5.5.2 The ����� - � relations . 112

5.6 Summary . 115

6 Local-feature schemes 117

6.1 Motivation . 117

6.2 Token constraints . 121

6.2.1 Individual tokens . 122

6.2.2 Pairs of tokens . 127

6.3 Definition of a local-feature scheme . 128

6.4 An example: representing polygonal shapes 129

6.5 Summary . 131

7 Token-ordering graphs 132

7.1 Preliminaries . 132

7.1.1 LFS restriction . 133

7

7.1.2 Use of �	��

� . 134

7.1.3 Ring-diagram sets and non-atomic TOGs 134

7.2 Scope graphs . 136

7.3 Stages of TOG construction . 137

7.3.1 LFS preparation . 137

7.3.2 Node creation . 139

7.3.3 Connecting the nodes . 148

7.4 Construction algorithm . 153

7.5 Example TOGs . 154

7.6 Summary . 158

8 Analysis of existing schemes 159

8.1 Contour codons . 159

8.1.1 LFS specification . 161

8.1.2 TOG construction . 164

8.1.3 The extended set of codons . 172

8.2 Extremum primitives . 173

8.2.1 LFS specification . 174

8.2.2 TOG construction . 175

8.3 Curvature types . 178

8.3.1 LFS specification . 179

8.3.2 TOG construction . 181

8.4 Summary . 189

9 Evaluation 191

9.1 Summary of qualitative boundary theory . 191

9.2 The atomic shape descriptors . 193

9.2.1 Design . 193

9.2.2 Discriminatory power . 196

8

9.2.3 Computability . 198

9.3 Support for higher-level curve description . 199

9.3.1 Model for abstract curve features . 199

9.3.2 Token-string description . 201

9.4 Token-ordering graphs . 203

9.4.1 Expressive power . 203

9.4.2 Construction . 205

10 Conclusions and further work 207

10.1 Reflections on the work as a whole . 207

10.2 Main contributions . 210

10.3 Directions for further work . 212

A QOT material 217

A.1 A grammar for the full set of outlines . 217

A.1.1 Generating only the canonical strings 219

A.2 Valid curvature-type subsets . 221

A.2.1 Procedure for subgrammar construction 221

B Constructing atomic TOGs 223

B.1 Discussion . 223

B.2 Construction algorithm . 227

C Specifications for Rosin’s codons 230

9

List of Figures

2.1 Two shapes and their symmetry axes . 33

2.2 The symmetry axes of a rectangle under (a) SAT and (b) SLS 34

2.3 Describing a shape by considering its concavities 36

2.4 Three shapes that Cohn’s representation can distinguish between. 37

2.5 Hoffman and Richards’ contour codons . 40

2.6 A change in curve orientation yields a different codon description 40

2.7 A shape and its process-inferring symmetry axes 45

2.8 The process-diagram for the shape given in Figure 2.7 46

2.9 The four primary sharp bends and cusps . 51

3.1 A shape annotated with its constituent qualitative curvature types 58

3.2 Outlines illustrating qualitative symmetry . 60

3.3 Five distinct exemplars of the outline type ������� 68

3.4 Two dissimilar-looking outlines described by �����
�������
� 68

4.1 The first four levels of the atomic hierarchy 75

4.2 Example curves labelled with level-3 atoms 78

4.3 An ellipse described using atoms from level 3 79

4.4 Level-2 atomic TOG . 88

4.5 Level-3 atomic TOG . 89

4.6 Exemplar curves for the instantiable strings in Table 4.10 91

10

5.1 The curve-feature hierarchy for the tokens listed in Table 5.2 102

5.2 Ring diagram showing triples matched to a closed curve 104

5.3 Ring diagram showing triples matched to an open curve 106

5.4 Ring diagrams showing the results of triple matching and elimination . . . 108

5.5 An example bar diagram . 112

5.6 The ”merging” of identities versus ”meeting” 114

6.1 Non-redundant triples fitted to an anonymous atomic description 118

6.2 The special case of meeting and merging that is problematic 121

6.3 Fitting complex tokens to a polygonal shape 130

7.1 Fitting the tokens of ����
 � to ������� � � � �	�!� � �	��� ��"�� 135

7.2 An example scope graph, #$� , for �	��

� . 136

7.3 An example of an invalid node mapping . 141

7.4 The merging and meeting of two triples . 142

7.5 A partial version of TOG %&�	��
'�)(*#���+ containing only the nodes 147

7.6 Substring equality implies a meeting or a merging 149

7.7 Alignment diagram for weak connections . 150

7.8 Alignment diagram for remote connections 152

7.9 TOG %&����

�,(*#���+ and its table of node connections 155

7.10 The scope graph, #.- , for polygonal shapes 156

7.11 /�01��23�4%5#6-7+ , its assigned nodes, and TOG %&/�08�	2
�4(*#9-:+ 156

7.12 /�01��2<;=%5#6-7+ , its assigned nodes, and TOG %&/�08�	2>;=(*#9-:+ 156

7.13 /�01��2<?=%5#6-7+ , its assigned nodes, and TOG %&/�08�	2>?=(*#9-:+ 157

7.14 /�01��2<;=%5#��@+ , its assigned nodes, and TOG %&/�01��2>;A(*#���+ 157

8.1 Hoffman and Richards’ contour codons . 160

8.2 A curvature plot of Hoffman and Richards’ codons 161

8.3 The restricted scope graph, #�B , for contour codons 165

8.4 Non-zero points of curvature inflection . 165

11

8.5 TOG %5C�CED)(*#1B@+ and TOG %5C!CEFG(*#8B�+ . 170

8.6 TOG %5C�CED)(*#1H ? + and TOG %5C�C�FI(*#1H ? + . 171

8.7 A selection of Rosin’s codons and their specifications 173

8.8 Curvature plot showing the primitives of Leyton’s scheme 174

8.9 TOG %&��J!2�(*#1BK+ . 177

8.10 TOG %&�	J�2	(*#8H ? + . 178

8.11 An exemplar curvature plot of the � curvature type 180

8.12 TOG %5L!0�MN(*#8H ; + . 187

8.13 Occurrences of �
O not accounted for by L�0PM 188

9.1 Curves that contain crossing and touching points 195

9.2 The sharing of identity atoms: points versus intervals 202

9.3 The finite-state machine equivalent to TOG %5C!CQD,(*#1B�+ and TOG %5C!CEFI(*#1B@+ . . 204

B.1 Connected TOG nodes for the interval atoms of level 2 224

B.2 Level-2 partial TOGs incorporating the �RO and � point atoms 225

B.3 Deterministic Level-2 partial TOG incorporating ��O 227

12

List of Tables

2.1 The RCC base relations . 35

2.2 The legal smooth joins between pairs of codons 41

2.3 Leyton’s semantic interpretations of curvature extrema 45

2.4 Leyton’s grammar rules for process continuation and bifurcation 48

2.5 The four kink-introduction transformations 51

3.1 The seven qualitative curvature types . 57

3.2 A selection of valid curvature-type subsets 65

3.3 A regular grammar that generates the convex figures 66

4.1 The partial curve states of levels 1, 2, and 3 73

4.2 The curve states and atoms of level 3 . 74

4.3 Calculating the number of atoms at each level 75

4.4 The atomic signatures and labels for levels 1, 2, and 3 76

4.5 The compatibility matrix for I-I tables . 81

4.6 The compatibility matrix for I-P-I tables . 82

4.7 I-I and I-P-I tables for the level-2 atoms and kink tokens 85

4.8 I-I table for the level-3 atoms . 85

4.9 I-P-I table for the level-3 atoms and kink tokens 86

4.10 A selection of syntactically valid and invalid atomic strings 91

5.1 A selection of curve features specified as complex tokens 95

13

5.2 Complex tokens representing salient curvature points 102

5.3 A list of the fitted triples from the ring diagram of Figure 5.2 105

5.4 A list of the fitted triples from the ring diagram of Figure 5.3 106

5.5 A valid alignment of two S=T:UWV - XZY@[triples . 111

5.6 The thirteen �P�@� - � triple relations . 113

5.7 The four valid alignments of \@� ��� ���] and �$\@� ��� � �]^� 115

6.1 Two of the valid alignments of \@� � � � � � �] and \@� � � � � ��� ���] . . . 123

6.2 An alignment of �>_ \@�<` �<_'�ba �<_'�<`]:�<_ and �c` �<_�\@�ba �<_R�<` �<_R�ba]^�da . . . 124

6.3 The triple constructed from the alignment matrix given in Table 6.2 126

6.4 Complex tokens for representing polygonal shapes 129

7.1 The specification of �	��
R� . 134

7.2 The prepared specification of ����
R� , with respect to # � 140

7.3 The three subsets resulting from a partitioning of �cY=Ufehgji 145

7.4 The set of graph nodes required for �	��
R�,%5#��@+ 147

8.1 Alternative sets of contour-codon specifications: C!CQD and C!CEF 162

8.2 The single valid alignment of ��_�\@�R` �'_R��a]:�'_ and itself 163

8.3 The prepared specification of C�C6F , with respect to #!B 166

8.4 The nodes for TOG %5C�C6D4(*#1B@+ and TOG %5C!CEFI(*#1B*+ 167

8.5 The node connections for TOG %5C�C.D4(*#1B@+ . 169

8.6 The token specifications for Leyton’s scheme 175

8.7 The nodes for TOG %&��J!2�(*#!BK+ . 176

8.8 The node connections for TOG %&��J!2�(*#�BK+ . 177

8.9 The token specifications for the curvature types of QOT 180

8.10 A valid alignment of k��P�@� - e^V=Y=U5l �7m6kon , where k*(okGn>pq� 181

8.11 The prepared specification of L�0PM , with respect to # H ; 182

8.12 The nodes for TOG %5L�0PMN(*#!H ; + . 184

8.13 The strong connections originating from rs�)%5�A+ in TOG %5L!0�MN(*#8H ; + 185

14

8.14 The six weak connections in TOG %5L!0PMQ(*#�H ; + 185

8.15 The node connections for TOG %5L�0PMN(*#�H ; + 187

A.1 A regular grammar for the full set of outlines 220

A.2 An enumeration of the 62 valid curvature-type subsets 222

B.1 I-I and I-P-I tables for the level-2 atoms and kink tokens 224

C.1 Hoffman and Richards’ original set of codons 231

C.2 Codons for adjoining straight lines . 231

C.3 Codons for representing the ends of open curves 231

C.4 Codons for representing curves with no curvature minima 232

C.5 Codons for representing convex angles and cusps 232

C.6 Codons for representing concave angles and cusps 233

15

List of Algorithms

4.1 Populating the I-I and I-P-I tables for a set of atoms 84

6.1 The XKT7t,XKT7�QYKu predicate . 125

7.1 Preparing an LFS for TOG construction . 139

7.2 Creation of the graph nodes for a restricted and prepared LFS 147

7.3 Constructing a non-atomic TOG for an LFS 154

B.1 Partitioning a set of context pairs . 228

B.2 Constructing an atomic TOG from a pair of I-I and I-P-I tables 229

16

Chapter 1

Introduction

In this chapter, we discuss the importance of shape for AI reasoning tasks and the complexity in-

volved in the general representation of shape. We choose to focus our attention on the qualitative

representation of two-dimensional shape. We propose the development of a theory, based on tangent

bearing and its successive derivatives, that underpins the boundary-based approach to the qualita-

tive representation of two-dimensional shape.

1.1 Background

1.1.1 The nature of shape

Shape is a ubiquitous spatial attribute in our everyday lives. All the objects that we per-

ceive, by sight or touch, have a shape. We use the word “shape” to describe a number of

different phenomena. We may be describing the configuration of the space that an object

occupies, we may be talking about the formation of a flock of birds in the sky, or we may

be interested in the spatial distribution of components that make up some artefact. In each

of these cases, the common denominator is the notion of shape. Most of the time, when

we are awake and alert, we are processing shapes. There is a constant need to recognise

objects in our environment so that we may manipulate them and, when navigating, avoid

them. Without the ability to perceive shape in any way our lives would be very restricted.

17

Chapter 1. Introduction 18

Shape is of importance to us as it is involved in much of the processing that characterises

intelligent behaviour, such as recognising objects, distinguishing between objects (“I want

the round one”), describing objects, assessing the possible behaviour and uses of objects,

and manipulating objects.

Shape is a complicated spatial attribute, because of its almost infinite variation and

richness. The spatial attribute position, for example, is easier to specify. To locate an object

in space we can specify its coordinates in some system relative to some origin. Shape is

more complex than this, and, compared with position, is analogous to dealing with an in-

finite number of points, each of which could be considered an almost insignificant part of

a substantial whole. Shape carries with it a great deal of information, and our capabilities

with regard to shape, although taken very much for granted, are impressive. Perhaps most

impressive of all is the capability we have for recognising objects that we have seen before

and classifying objects that we have never before encountered. We perform this task, prin-

cipally, by perceiving an object’s shape and comparing it with the shapes of objects that are

held in memory from previous experience. In doing this, there is a need to take account of

the object’s orientation in space (since we may be viewing it from a novel angle) and also

the possibility of occlusion: some parts of the object may not be visible to us (hidden by

virtue of orientation) or there may be some other object(s) obscuring our view. We must

also bear in mind that the complexity of object shapes necessitates the construction and

storage of shape descriptions that characterise, rather than exactly replicate, the shapes

that we perceive. This raises an interesting question: how do we internally describe shape,

so that our descriptions contain the information and structure required to allow us to effi-

ciently recognise objects and perform related tasks of manipulation and reasoning? Do we

have just one representational scheme, or a number of separate schemes, each tailored to a

particular processing requirement?

Chapter 1. Introduction 19

1.1.2 Representing shape

Given that the processing of shape is necessary for a wide range of tasks that demonstrate

intelligence, the representation of shape is an important concern for AI. Shape plays a cru-

cial role in the recognition of objects and environmental features, as we have discussed.

For this kind of task, different levels of processing are required, given the need to take

sensory data as input (in the form of retinal images) and extract higher-level information.

First it is necessary to process the data at a low level, to infer such information as contour

segments and surfaces. This level of processing is the subject matter of the field of low-

level computer vision (see, for example, (Ballard & Brown 1982, Boyle & Thomas 1988)).

Higher-level visual processing involves models that have been derived from the prim-

itive information obtained at earlier stages. Two such higher-level models include the

stick-figure representation developed by Marr & Nishihara (1978) and the componential

approach of Biederman (1987).

In addition to the field of computer vision, there are other areas of AI research where

formalisms for representing shape are required. One of these, and the one that will be of

most interest to us in this thesis, is the area of research known as qualitative spatial reason-

ing (QSR), a relatively new field that has evolved from earlier work on qualitative physics

(QP). The aim of QP being to develop useful models of the physical world and physical

systems that exploit commonsense knowledge (see (Forbus 1990) for a survey of the work

carried out in QP). As suggested by its title, QSR is concerned with spatial representa-

tions that can be described as qualitative in nature, rather than quantitative. This is so that

representations are supportive of tasks involving high-level reasoning. Formalisms for a

number of spatial attributes have been developed, e.g., topology (Randell et al. 1992), po-

sition (Hernández et al. 1995), distance (Hernández et al. 1995), and orientation (Latecki &

Röhrig 1993). The qualitative representation of shape, however, has not been extensively

studied. When we refer to a qualitative representation, we mean one that makes explicit

certain qualities that are important for particular tasks of reasoning, without including

specific metric information that is substantially less relevant to high-level commonsense

Chapter 1. Introduction 20

reasoning. A predominantly quantitative representation, on the other hand, is one includ-

ing detailed metric information that may be difficult to process in high-level terms. It is

not always easy or desirable to classify a representation as being either qualitative or quan-

titative, there may be occasions when it is useful to augment non-numeric information

with metric information. The main point to make is that a representation designed for a

particular kind of task must make explicit the information required by the task. The fact

that we are interested in commonsense reasoning means that the information needs to be

of a relatively high-level nature. The distinction between qualitative and quantitative rep-

resentations, then, is most usefully considered as one of degree. In general, we can think

of a representation as having a qualitative aspect if it includes non-numeric information,

and a quantitative aspect if it includes numeric information. For more information about

QSR, and the qualitative representation of spatial knowledge, see (Cohn 1997, Freksa &

Röhrig 1993, Hernández 1994).

When we develop a representational scheme for describing shape, the decisions we

make, with regard to the qualities of shape that we want to make explicit, depend on

the processing that the scheme is to be involved in. It isn’t feasible, perhaps, to develop

a scheme for describing shape that is so generic that it can be used to adequately model

shape of any kind for any given kind of task. A more realistic approach is to have a number

of separate schemes, each encompassing a particular scope of shapes, and each amenable

to a particular class of tasks. Moreover, because of the inherent complexity of shape, any

attempt to formulate a scheme that is capable of describing shapes of all kinds would

benefit from an analysis of more manageable schemes, i.e., as with most development

processes, an earlier prototype can “inform” the design of later ones. For this reason,

even if a truly generic scheme is a possibility, there is much value in developing specific

schemes with restricted scopes, since such schemes have the potential for highlighting

those aspects of shape description that are problematic. In short, specific schemes may

inform the development of more general ones.

The most straightforward and useful way of classifying shape representations is to

Chapter 1. Introduction 21

make the distinction between those that deal with shape in three dimensions and those that

deal with shape in two dimensions. In this thesis we choose to focus our attention on the

description of two-dimensional shape. We do this for the reasons already given, namely,

that the complexity of representing many or all kinds of shape using a single scheme is

too great, thereby justifying the development of schemes with more modest scopes. By

concentrating on two-dimensional shape, we are still dealing with shapes that have an

important role to play in both object recognition and commonsense reasoning. A number

of application areas for schemes that qualitatively represent two-dimensional shape are

listed in Section 2.1.1.

1.2 Thesis statement

Schemes for representing two-dimensional shape are commonly classified as being either

boundary-based or region-based. Boundary-based schemes typically describe the type

and position of localised features round the bounding curve of a region. In contrast,

region-based schemes base their descriptions on shape interior. In this thesis, we focus

our attention on the boundary-based approach to qualitatively representing shape. Exist-

ing boundary-based schemes, which describe shapes using strings of symbols, differ as to

the number and kind of curve features they represent. Each symbol in a string is a label

identifying a particular kind of localised curve feature present on the bounding curve of

the shape described by the string. Some examples of localised features include straight-

line segments, curvilinear segments, inflection points, and points of tangent discontinuity

(i.e., angles and cusps). The kinds of tasks that a particular scheme is suitable for is depen-

dent on the symbols (or ”primitives”) provided by the scheme. Although schemes differ

as to the sets of primitives they provide, those schemes that are instances of the boundary-

based approach exhibit a number of common features. Principally, they all use high-level

descriptors which are ultimately analysable in terms of qualitative curvature variation.

This leads us to the central claim of this thesis:

Chapter 1. Introduction 22

An analysis of qualitative curvature variation, based on tangent bearing, provides an

adequate theoretical underpinning for the boundary-based approach to the qualitative

representation of two-dimensional shape, leading to a theory which (i) provides a uni-

fying account of, and (ii) generalises, existing qualitative boundary-based schemes.

In this thesis, an analysis of curvature variation is undertaken, in which tangent bearing

and its successive derivatives (of which curvature is the first), are represented qualitatively

by values taken from one of two quantity spaces. The analysis yields an unbounded hi-

erarchy of basic shape descriptors, referred to as ”atomic tokens”, from which a general

theory of the boundary-based approach, which we call qualitative boundary theory (QBT),

is developed. We show that a set of tokens taken from any level of the hierarchy can be

regarded as a set of fundamental building-blocks, from which the higher-level primitives

of existing boundary-based schemes can be specified. In doing so, we are able to pre-

cisely specify the semantics of a primitive, and highlight potential ambiguities relating to

the primitives of existing schemes. The atomic tokens, together with rules for combin-

ing them into complex tokens capable of representing curve features of greater abstraction,

define the space of possible higher-level primitives. A complex token is specified by a

(possibly infinite) set of atomic-token-string triples, each consisting of an identity string,

together with leading and trailing context strings. The set of primitives of a scheme can be

specified as a set of complex tokens. A local-feature scheme is defined to be a set of com-

plex tokens which represent features that do not overlap round the bounding curve of a

shape, thus ensuring every description is a string containing only shape descriptors.1 We

show that each of the qualitative boundary-based schemes in the literature can be defined

as a local-feature scheme, by specifying the primitives of each of them as complex tokens

and verifying that the features of the scheme do not overlap. A set of tokens (atomic or

complex) can be seen as providing a formal language for representing shape. Strings in a

language represent closed and/or open curves and are subject to token-ordering and closure
1I.e., no additional symbols are required in the string to encode the relative position of features along the

bounding curve.

Chapter 1. Introduction 23

constraints. We show how the token-ordering constraints for a language (set of tokens) can

be visually encoded as a token-ordering graph, with nodes representing tokens and directed

edges the ordering constraints between tokens. Algorithms are provided for systemati-

cally constructing such graphs for sets of atomic and complex tokens. We demonstrate

how token-ordering graphs, which we construct for each of the existing boundary-based

schemes, can aid in the evaluation and comparison of local-feature schemes.

In summary, QBT consists of three parts: (i) an analysis of qualitative curvature vari-

ation yielding an unbounded hierarchy of basic shape descriptors (the atomic tokens), (ii)

support for higher-level curve description, including a formalism for specifying complex

tokens, and (iii) a theory of token-ordering graphs.

1.3 Structure of the thesis

The remainder of the thesis is structured as follows:

� In Chapter 2 we review existing approaches to the representation of two-dimensional

shape, including schemes which differ with respect to the amount of qualitative and

quantitative information used for description. We highlight the characteristics of

qualitative representations that make them suitable for commonsense spatial rea-

soning, focussing our attention on boundary-based schemes.

� In Chapter 3 we describe a boundary-based scheme, referred to as ”QOT”, which

represents outlines using a set of seven qualitative curvature types. QOT is shown to

have greater scope than the boundary-based schemes covered in Chapter 2, but, in

some respects, less discriminatory power. These differences highlight the common

tradeoff between scope and detail.

� Qualitative boundary theory (QBT) is presented in Chapters 4 to 7. In Chapter 4,

the unbounded hierarchy of basic shape descriptors is derived from an analysis of

qualitative curvature variation. The correspondence between an open/closed curve

Chapter 1. Introduction 24

and its token-string description is explained and token-ordering graphs are provided

for the first three levels of the hierarchy. Chapter 5 describes the means by which

complex tokens are specified in terms of atomic tokens, enabling higher-level curve

features to be represented. In Chapter 6, the problem of aggregating complex tokens

into sets, such that shapes are described using strings consisting solely of tokens, is

addressed, resulting in the definition of a local-feature scheme. In Chapter 7, the con-

struction of a token-ordering graph for a set of complex tokens is discussed. A pro-

cedure is then provided for constructing token-ordering graphs for certain restricted

kinds of local-feature schemes.

� Chapter 8 provides an analysis of the boundary-based schemes described in Chap-

ters 2 and 3, defining each one as a local-feature scheme and presenting complex-

token specifications for the primitives of each scheme. Token-ordering graphs are

constructed for each scheme and used to aid the evaluation and comparison of the

schemes.

� QBT is evaluated in Chapter 9.

� Finally, in Chapter 10, we conclude by reflecting on the work carried out and high-

lighting the contributions made by it. We end the chapter by discussing the most

promising directions for future research.

Also contained in this thesis are three appendices. Appendix A provides a regular

grammar that generates valid string descriptions for the QOT scheme presented in Chap-

ter 3. Appendix B contains a detailed discussion of the construction of token-ordering

graphs for sets of atomic tokens, culminating in a construction algorithm. Appendix C

provides a list of complex tokens that correspond to the boundary-based primitives of

Rosin (1993).

Chapter 2

Existing schemes

In this chapter, we begin by listing the different kinds of applications that require qualitative rep-

resentations of shape and looking at some important aspects of qualitative schemes. We go on to

consider the region-based and boundary-based approaches to representing shape, looking at, and

comparing, a number of schemes from the literature.

2.1 Overview of shape representation

In the previous chapter, we highlighted the significance of shape for AI tasks and the im-

portance of shape in general. Representations of shape are required for tasks that involve

a degree of reasoning, but they are also required for other kinds of tasks, e.g., non-AI

tasks such as those related to the field of computer graphics that involve the generation of

shapes. As has been already mentioned, it is not feasible to develop a single representa-

tional scheme for shape that satisfies the needs of each and every task involving shape.

Instead, it is necessary to develop separate schemes that are designed according to partic-

ular processing requirements. The information that a scheme makes explicit is therefore

dependent on the task(s) it is designed to be used for. Application areas that are not as-

sociated with AI usually require representations of shape that are predominantly quan-

titative in nature, i.e., shapes are described using numerical, rather than non-numerical,

25

Chapter 2. Existing schemes 26

information. Application areas that require quantitative representations of shape include:

computer-aided design (CAD), where precise models of artefacts are constructed, and ac-

curate distance and size measurements are important; computer graphics and animation,

where bitmapped and vector-based graphics are generated for aesthetic or instructive pur-

poses; the modelling of entity growth and development, as exemplified by tools based on

“L-systems” (Rozenberg & Salomaa 1980, Prusinkiewicz & Lindenmayer 1990); and cre-

ative architectural design (Chase 1989, Piazzalunga & Fitzhorn 1998, Stiny 1980).

Rather than concerning ourselves with application areas that relate to “non-AI” tasks

(such as those just listed), we choose, in this thesis, to focus our attention on represen-

tations of shape that include qualitative information that is supportive of commonsense

reasoning. Such representations are most appropriate for applications within AI that are

concerned with the identification and classification of objects, and other tasks that involve

reasoning about shape. Qualitative schemes yield shape descriptions that make explicit

those (relatively high-level) qualities of a shape that are considered most important, within

a particular context. We may be interested, for example, in how many concavities a shape

has, whether it has any lines of symmetry, whether it is rectilinear or curvilinear, whether

it has any holes, etc. Information of this kind is usually only implicit in numerical de-

scriptions, which sacrifice high-level information for low-level detail. Although it may be

possible to infer the kind of high-level information we are interested in from numerical de-

scriptions, extraction of the information is likely to be computationally expensive. Looking

at the bigger picture and, in particular, the origin of qualitative descriptions, it is of course

likely that, in many circumstances, some process is carried out to obtain a high-level de-

scription from a lower-level one. The field of computer vision serves as a good example

here, since low-level raster images are commonly the input, and these need to be converted

into a higher-level representation before object identification is feasible. It is instructive to

note that qualitative representations are to be considered different from quantitative ones

(rather than “better”), and are preferable only in particular situations. In this thesis, we

are primarily concerned with schemes that contain qualitative information, because we are

Chapter 2. Existing schemes 27

interested in supporting applications within the domain of AI.

2.1.1 Application areas for qualitative schemes

Here we list a selection of application areas that require representations of shape that are

predominantly qualitative, to give an idea of the kinds of systems that could benefit from

the general theory that we develop in Chapters 4 to 7.

� Object identification and classification

Although low-level vision, which tackles the extraction of primitive image features

such as edge contours, is not of direct concern to us, high-level visual processing in-

cludes tasks of object identification and classification that require qualitative descrip-

tions. There exist recognition-oriented representations for shape that use primitives

based on the idea of a generalised cylinder (see Ballard & Brown 1982), most notably

the 3-D model representation of Marr & Nishihara (1978) and the geon-based rep-

resentation of Biederman (1987, 1988). These schemes aim to construct qualitative

3-D models of objects from images, and are best suited to the identification of ob-

jects characterised by well-defined part structures. Another recognition-oriented ap-

proach, which focuses on part segmentation but doesn’t construct 3-D models, i.e.,

stays within the framework of two dimensions, describes shapes using contour codons

(Hoffman & Richards 1984, Rosin 1993).

� Qualitative kinematics (QK)

QK is a domain concerned with qualitative reasoning about the motion of objects.

The movement of an object may or may not be constrained by other objects; whether

motion is possible, and what kinds of motion are possible, is in part a function of

the configuration of the objects and their shapes. For a survey of work in this area

see (Weld & de Kleer 1990). Related work includes Shoham’s (1985) analysis of the

concept of freedom, and the feature algebra of Karinthi & Nau (1989).

Chapter 2. Existing schemes 28

� Sketch/diagram understanding

In order to compute the meaning of a drawing, it is necessary to formulate high-level

descriptions of the individual elements that the drawing comprises. A line drawing

could originate from an automated system, or it may have been produced by hand. It

is reasonable to assume that computer-generated drawings are usually easier to pro-

cess, because their content is likely to be consistently produced, according to fixed

and accessible rules. Perhaps a hybrid system, consisting of a suitable representation

of shape, together with an Optical Character Recognition (OCR) subsystem, would

be useful here. Freeman (1974) has surveyed the computer processing of line draw-

ings. A more recent survey, of diagrammatic representation and reasoning, is pro-

vided by Kulpa (1994).

� Geographical Information Systems (GIS)

Within the domain of GIS, shape is clearly important, because much geographical

data relates to the shape of landmasses and other features on the Earth’s surface. In

the context of GIS, modelling shape is of interest when predicting the movement,

formation, and deformation of landmasses and landmass features. Two qualitative

shape representations of particular relevance here are those of Cohn (1995) and Ley-

ton (1988), where shape concavities are given the most emphasis.

� Evaluating spatial expressions

Some conception of the shapes of objects is necessary in order to evaluate certain spa-

tial expressions (Herskovits 1997). Consider the following example of preposition

applicability. It makes no sense to say that ”the flower is in the table”. The combi-

nation of ”the flower”, ”the table”, and the preposition ”in” would not normally be

accepted as a pragmatically correct sentence. We can, however, say that ”the flower

is on the table”. By substituting “flower” with “nail”, either preposition may be used.

This example suggests that a consideration of the shapes of the objects in a discourse

may help determine which utterances containing prepositions are allowable.

Chapter 2. Existing schemes 29

2.1.2 Aspects of qualitative schemes

Marr & Nishihara (1978) provide, along with a discussion of their 3-D model representa-

tion, three criteria for assessing the suitability of a shape representation for object recogni-

tion. As a starting point, it will be useful to recall these, because they are relevant to other

kinds of tasks as well. The first criterion is accessibility, which relates to the computabil-

ity of a description. Clearly, and for object recognition in particular (since there may be

a real-time requirement), it is important that shape descriptions can be computed from

source data within a reasonably short space of time. As well as considering the efficiency

of computation, descriptions must actually be computable; as Marr and Nisihara point

out: “There are fundamental limitations inherent in the information available in an image

– for example its resolution – and the requirements of a representation have to fall within

the limits of what is possible” (p. 270). The second criterion is scope and uniqueness. The

scope of a representation is given by the class of shapes that the representation is designed

to describe. Marr and Nishihara’s 3-D model representation has as its scope stick-figure

objects, e.g., animals, because those are the kinds of entities that can be meaningfully ap-

proximated by arrangements of simple cylindrical primitives. The uniqueness of a repre-

sentation relates to the issue of viewpoint invariance. For recognition, it is important that

there exists a canonical description of a shape that is independent of the viewing position,

otherwise “. . . at some point in the recognition process, the difficult problem of deciding

whether two descriptions describe the same shape would have to be addressed” (p. 272).

The third and final criterion is stability and sensitivity. A representation is considered stable

if similar shapes, i.e., shapes that differ only in minor respects, have similar descriptions.

To complement stability, the notion of sensitivity refers to the extent to which a represen-

tation is able to handle fine detail. The criterion of stability and sensitivity is related to the

notion of granularity.

Freksa & Röhrig (1993) present a general discussion of spatial knowledge dimensions,

as a preface to a comparison of a number of spatial reasoning research projects. Although

some of the dimensions are not applicable here (because they are interested in the domain

Chapter 2. Existing schemes 30

of space, rather than the representation of shape specifically), two of them are worth men-

tioning. The first, granularity, refers to “. . . the resolution of spatial features or decision

criteria and to the transition between different levels of resolution”. The other dimension

of interest concerns how a system handles lack of knowledge. More specifically, Freksa &

Röhrig identify two senses in which the information available to a system may be consid-

ered “incomplete”: (i) certain details may be inaccessible and not possible to extract (as

is the case with occluded objects in computer vision, for example), or (ii) the information

may not be of sufficient precision. We include the granularity dimension, and the first

interpretation of incompleteness, in our list of important aspects of a qualitative shape

scheme.

We are now in a position to list those aspects of a qualitative shape representation that

we consider to be most relevant. We will revisit the list later on in the chapter, when

we are presenting and comparing various schemes from the literature. From this point

onwards, we are solely interested in qualitative schemes for describing shape in two di-

mensions, although whenever a scheme applies also to three dimensions we will make

this clear. We also make the assumption that all of the schemes we are interested in yield

descriptions that are invariant with respect to translation, rotation, and uniform scaling

transformations. Any exceptions to this assumption will be highlighted. Our assumption

corresponds, in a loose sense, to Marr & Nishihara’s uniqueness criterion. Here, then, is our

list of important aspects of qualitative shape representations that deal with the description

of two-dimensional shape:

� Computability

Are descriptions actually obtainable in practice and can they be obtained efficiently?

Of importance with regard to computability are the sources from which descriptions

are obtained. As well as considering the “overall” computability of a scheme, it

may be the case that certain primitives of the scheme are easily computable, whereas

others are more difficult (or very difficult) to compute. In this thesis we are interested

in the sources that are capable of providing descriptions, rather than any difficulties

Chapter 2. Existing schemes 31

that may be associated with a description’s construction by a source, e.g., a low-level

computer vision process may be one of a chain of processes that derives a description,

but we are not interested in the details of such low-level processing.

� Scope

What range of shapes are adequately described by the scheme? Are there shapes

that cannot adequately be described because they are characterised by features not

modelled by any of the available primitives?

� Primitives

What are the basic building-blocks from which descriptions are composed? How

many primitives are available, and are they domain-specific or of a more general

kind? How computable is each primitive? As well as geometric building-blocks,

the notion of a “primitive” encompasses the basic operations that may be available

for constructing descriptions and specifying the relationships between the building-

blocks that comprise a description.

� Discriminatory power

Because we are dealing with predominantly qualitative schemes, it is not the case

that each description corresponds to only one shape; rather, each description corre-

sponds to (approximates) an equivalence class of shapes. We can think of a scheme

as partitioning a ”shape-space” into a set of such equivalence classes. The discrim-

inatory power of a scheme is given by the partition defined by it. It is therefore the

nature of partitions that allows us to compare the discriminatory power of differing

schemes. The precise partition defined by a scheme is dependent on its scope and

primitives.

� Granularity

Is the representation able to describe the same shape at more than one level of detail?

And, if so, how many levels are supported? Is the notion of granularity built into

Chapter 2. Existing schemes 32

the system, i.e., are operations provided for moving between the different levels of a

description and for relating descriptive elements from different levels?

� Incomplete information

This aspect relates to the extent to which a scheme is able to cope with missing in-

formation. If a shape is occluded in some way, does the resultant description differ

significantly from that obtained if the shape were wholly visible? Is the scheme ca-

pable of encoding, in the description, the fact that information is missing?

2.2 Region-based schemes

Schemes that we may classify as region-based place greater emphasis on the interior of a

shape, as opposed to the bounding contour of a shape. In this section, we concentrate on

region-based schemes and, in the next section, we switch our attention to boundary-based

schemes. We start this section by briefly considering the symmetry-based approach to

describing shape, we then go on to describe the more qualitative approach of Cohn, which

is based on the connection primitive of the Region Connection Calculus (RCC) together

with a convexity primitive.

2.2.1 Symmetry-based representations

The most popular representation based on symmetry is the Symmetric Axis Transform

(SAT)1, as described by (Blum & Nagel 1978). The symmetry axis of a shape is given by

the locus of the centres of the maximal discs that fit within the shape. A maximal disc is

a circle which touches the boundary at at least two points, exists within the inner region

defined by the boundary, and is not wholly contained by any other circle within the region.

The SAT is defined by the symmetry axis together with a radius function which maps each

point along the axis to the radius value of the maximal disc associated with that point. Two

example shapes, and their symmetry axes, are given in Figure 2.1.
1Also known as the Medial Axis Transform (MAT).

Chapter 2. Existing schemes 33

Figure 2.1: Two shapes and their symmetry axes

The values of the radius function are normalised, with the effect that SAT descriptions

are independent of an external coordinate system and therefore invariant with respect to

translation, rotation, and uniform scaling transformations. Given a description under SAT,

the symmetry axis of a shape may be segmented into parts, each of which is referred to as

a simplified segment. Each point along an axis is either a normal point, a branch point, or an

end point. An axis is segmented at its branch points, and each simplified segment consists

wholly of an interval of normal points. In Figure 2.1, then, the shape on the left has just

one simplified segment, while the shape on the right has five. Blum & Nagel (1978) show

how each simplified segment may be qualitatively characterised, by associating with each

segment a sequence of elementary descriptors, that reflect the changes in the curvature of

the axis segment and associated boundary segments. The maximal discs associated with

each point of the simplified segment’s axis define the boundary segments that correspond

to the part of the symmetry axis given by the simplified segment. There are two bound-

ary segments, a “left” one and a “right” one. Changes in the curvature of the boundary

segments relate to changes in the radii of the maximal discs. The elementary descriptors

include “worm”, “opening wedge”, “closing wedge”, “cup”, and “flare”.

The SAT representation is more suited to “natural” shapes than rectilinear ones. It was

introduced and explored by Blum, in the context of biology, where the shapes of interest

are reasonably well described by the SAT. Blum & Nagel (1978) state that “[t]he SAT is not

the simplest description for rectilinear figures” (p. 169). A rectangle, for example, has an

unintuitive symmetry axis that is segmented into five simplified segments, as shown in

Chapter 2. Existing schemes 34

Figure 2.2(a).

A common criticism of the SAT (see (Pizer et al. 1987)) is that very small changes in the

shape of a boundary can result in significant changes in the symmetry axis, to the extent

that extra branch points may be introduced. As branch points are the principal means

by which a shape is segmented into parts, the SATs sensitivity to noise and small detail

is of concern, and recognised as problematic. There have been attempts to overcome the

sensitivity problem by adopting a multi-resolution approach to SAT description; see (Pizer

et al. 1987) and, more recently, (Chung & Ohnishi 1997). Algorithms for computing the SAT

of shapes represented by v -sided polygons have been devised, e.g., (Lee 1982).

An alternative symmetry-based analysis is given by Smoothed Local Symmetries (SLS),

as described in (Brady 1983, Brady & Asada 1984). Brady re-defines the notion of local sym-

metry and introduces a subsumption rule, by which an axis is removed if its ”producing

region” is wholly subsumed by that of another axis. The SLS analysis gives preferable re-

sults for rectilinear shapes by suppressing the ”mini-axes” that appear in SAT descriptions,

as shown in Figure 2.2(b).

(a) (b)

Figure 2.2: The symmetry axes of a rectangle under (a) SAT and (b) SLS

2.2.2 Cohn’s RCC-inspired approach

An alternative region-based approach to describing shape, based on the notions of connec-

tivity and convexity, has been explored by Cohn (1995). The logical theory of space known

as the Region Connection Calculus (RCC), see (Randell et al. 1992), provides eight jointly

exhaustive pairwise disjoint (JEPD) qualitative base relations that may hold between two

Chapter 2. Existing schemes 35

regions. The relations are listed in Table 2.1.

Relation Meaning

x y w9x %y�3(oz{+ � is disconnected from z
yx | x %y�3(oz{+ � is externally connected with z

yx �>}8%y�d(oz~+ � partially overlaps z
x,y |{��%y�3(oz{+ � is identical to z

x
y

� �d�'%y�3(oz{+ � is a tangential proper part of z

y

x

� �d�3��%y�d(oz~+ � has z as a tangential proper part

y
x � � �
�R%y�3(oz{+ � is a non-tangential proper part of z

x
y � � �
�3��%y�d(oz~+ � has z as a non-tangential proper part

Table 2.1: The RCC base relations

The two relations of immediate relevance to Cohn’s shape representation are w9x and

| x . In addition to these two base relations, a primitive function, C8�)v>�c%y�c+ , is introduced,

which returns the convex hull of the region � . The description of a shape is given by

the number of concavities that a shape has, together with the RCC relationships that hold

between each pair of concavities. All convex shapes, therefore, have the same description

under the representation.

The basic idea of the representation will be described with reference to the shape given

in Figure 2.3. The first stage is to determine the concavities of the shape, which correspond

to the maximal connected parts of the shape’s geometric inside. The geometric inside of a

shape is given by the remainder of the convex hull of the shape minus the region occupied

by the shape itself. The shape in Figure 2.3 has four concavities (or “insides”), labelled �h� ,
� ; , � ? , and ��� . Each pair of concavities is either disconnected (w9x) or externally connected

Chapter 2. Existing schemes 36

(| x). With reference to the Figure, we can see that ��� and �@; are externally connected, and

that all other pairs are disconnected. The basic description of the shape then, using the w9x
and | x base relations, is as follows:

| x %&�,�4(Z�@;)+>� w9x %&�)�4(Z�@?,+b� w9x %&�)�4(Z� � +b� w9x %&�@;=(Z��?,+>� w9x %&�@;=(Z� � +b� w6x %&�@?A(Z� � +

As illustrated in the figure, the technique of specifying concavity relationships can be

re-applied to the concavities themselves. In this way, shapes with the same number and

configuration of concavities can be distinguished, so long as there is a difference in the

shape of their concavities that can be expressed. The representation therefore supports

hierarchical shape description.

c1

c2

c3

c4

c2c1

Figure 2.3: Describing a shape by considering its concavities

As described so far, the representation is unable to distinguish between two shapes

that have the same number of concavities and differ only with respect to the order of the

concavity relationships. To overcome this, Cohn shows how a shape can be partitioned

in such a way as to detect differences in concavity ordering. To supplement the parti-

tioning technique, the predicate ��u��I�)SKY=�)�@%&�^(Z� n + is introduced, which holds iff the concav-

ities � and � n are adjacent to one another round the perimeter of a shape. With just w9x ,

| x , and ��u*�I�^SKY=�,� , it is not possible to distinguish between the three shapes shown in Fig-

ure 2.4, because each shape has two concavities that are disconnected and adjacent to one

Chapter 2. Existing schemes 37

another2, i.e., each shape is described by w9x %&�A�4(Z�@;)+E���	u*�I�^SKY=�,�K%&�,�)(Z��;,+ . In order that the

shapes can be distinguished, three extra predicates are introduced. First, �{�7�QY4�<� u:Y is de-

fined, which allows the first shape in Figure 2.4 to be distinguished from the other two

shapes. �{�7�PY4�<� u7Y�%&�)(Z�@n&(o�c+ holds if the concavities � and �4n occur on the “same side” of the

shape � . For the first shape, we have �R���:�PY4�<� u7YA%&�=�)(Z��;=(o�>+ . Second, in order to distinguish

between the last two shapes, the predicate �hX x ehl����)Y4�=UI%&�)(Z�,n&(o�c+ is defined, which holds if a

straight line can be drawn which | x s all of the “arms” that adjoin the concavities � and �An .
Also, the predicate �hX4�'e=� x ehl����)Y4�=Uo%&�^(Z� n (o�>+ is defined, which holds if �{�7�PY4�<� u7Y=%&�^(Z� n (o�>+ holds

but �hX x ehl����)Y4�=Uo%&�^(Z� n (o�c+ does not.

c1

c2

c1
c2

c1 c2

Figure 2.4: Three shapes that Cohn’s representation can distinguish between.

The three shapes can now be distinguished:

Leftmost shape: w9x %&� � (Z� ; +b�s��u*�I�^SKY=�,�K%&� � (Z� ; +>���R�{�7�QY4�<� u:YA%&� � (Z� ; (o�c+
Middle shape: w6x %&� � (Z� ; +b�s��u*�I�^SKY=�,�K%&� � (Z� ; +>���hX x ehl����^Y4�=UG%&� � (Z� ; (o�c+
Rightmost shape: w9x %&�^�4(Z�@;,+b�s��u*�I�^SKY=�,�K%&�)�4(Z��;,+>���hX4�'e=� x ehl����)Y4�=Uo%&�)�4(Z��;=(o�>+

We are now in a position to summarise the constituents of a shape description. A de-

scription consists of one or more granularity levels, where the number of levels is depen-

dent on the extent to which the technique is re-applied to the concavities of a shape. The

shapes at each level are described by strings of conjuncts representing the relationships

that hold between their concavities. For each pair of concavities, ��������� holds, where

��p�� w6x (4| x
� , � p¡�,��u*�I�^SKY=�,��(*�'��u��I�)SKY=�)� � , and ��p��)�hX x ehl����)Y4�=UG(¢�hX4�'e=� x ehl����)Y4�AU£(*�R���:�PY4�<� u7Y � ,
2Note that only shapes with more than three concavities can have two concavities that are not adjacent.

Chapter 2. Existing schemes 38

with the constraint that if �¥¤¦| x then �¥¤§��u*�I�^SKY=�,� .3 Between two concavities, then, one

of eleven mutually exclusive relationships must hold. The full description of the shape

given in Figure 2.3, i.e., including re-application of the technique to �=� (giving the second

level of the hierarchy), is as follows:

Description at first level
¨ � � (Z� ;)©*ª | x �s��u*�I�^SKY=�,�b�s�hX4�'e=� x ehl����)Y4�AU
¨ �)�4(Z�@? ©*ª w9x ���'��u��G�^SKY=�)�>�s�~X4�
e=� x ehl����^Y4�=U
¨ �)�4(Z� � ©*ª w9x �«��u*�I�^SKY=�,�b���R���:�PY4�<� u7Y
¨ �@;=(Z�@? ©*ª w9x �«��u*�I�^SKY=�,�b�s�hX4�'e=� x ehl����^Y4�=U
¨ �@;=(Z� � ©*ª w9x ���'��u��G�^SKY=�)�>�����{�7�QY4�<� u:Y
¨ �@?=(Z� � ©*ª w9x �«��u*�I�^SKY=�,�b�s�hX4�'e=� x ehl����^Y4�=U

Description at second level
¨ �)�4(Z�@; ©*ª w9x �«��u*�I�^SKY=�,�b���R���:�PY4�<� u7Y

2.3 Boundary-based schemes

In this section, we focus our attention on schemes that derive their descriptions by travers-

ing the boundary contour of a shape. There are other schemes that may be categorised as

“boundary-based” which do not derive descriptions by curve traversal, e.g., Fourier trans-

forms (see Ballard & Brown 1982), the sinusoidal transform (Pratt 1999) and the scale-space

approaches (e.g., Witkin 1983, Mokhtarian & Mackworth 1986, Mokhtarian et al. 1996).

However, these schemes are predominantly quantitative and therefore only of notewor-

thy interest to us here. A common characteristic of the schemes we look at here is that

shapes are described by strings of symbols, such that each symbol corresponds to a par-

ticular localised curve feature located on the bounding curve of the shape. The schemes

differ principally with respect to the primitives (symbols) they use, reflecting the salience

attributed to particular curve features by each of the schemes.
3I.e., concavities that are externally connected must be adjacent.

Chapter 2. Existing schemes 39

2.3.1 Contour codons

Hoffman & Richards (1982) introduced a set of four contour codons for describing smooth

planar curves for recognition purposes. Each contour codon is a segment of curve that is

bounded by curvature minima and which contains either zero, one, or two points of zero

curvature. The four codon types are labelled ¬ , ­=` , ­^a , and ® , reflecting the number of

zero-curvature points present within each type of segment. There are two codon types

that contain a single point of zero curvature (­=` and ­^a), they are distinguished by the

place within the segment at which the point occurs: for the ­A` codon, the point of zero

curvature occurs after the point of maximum curvature, whereas, for the ­ a codon, the

point of zero curvature occurs before the point of maximum curvature. In a more recent

paper, (Richards & Hoffman 1987), the ¬ codon type is subdivided into two codon types

(¬ ` and ¬ a), increasing the original set of contour codons to five.4 Figure 2.5 shows the

five codons. The dots shown on the curve segments signify points of zero curvature and

the slashes minima of curvature. The arrows indicate the direction of curve traversal (from

the “tail” of the codon to the “head”). The figure is taken to be the region to the left of the

direction of traversal and ground the region to the right. A curve is traversed in a particular

direction, and described by a string of codon labels, according to the variation in curvature

encountered along the curve. A curve is segmented into parts according to the presence

of negative curvature minima: “[n]atural parts. . . lie between concave cusps” (Richards &

Hoffman 1987, p. 700). An explanation of why negative curvature minima are considered

important for determining parts is given in (Hoffman & Richards 1984). Further work on

part salience has been carried out by Hoffman & Singh (1997).

Hoffman and Richards’ choice of primitives is motivated by their theory of the hu-

man visual perception of figures, which attempts to explain how we segment a figure into

parts for subsequent recognition tasks. Hoffman and Richards postulate that figures are

segmented into parts at negative curvature minima, and this is reflected by the contour
4For completeness, they also consider a sixth codon type for straight-line segments, labelled ¯ , since a

straight line can be thought of as a curve segment containing infinitely many points of zero curvature.

Chapter 2. Existing schemes 40

2110 0+ +

Figure 2.5: Hoffman and Richards’ contour codons

codons, which are curve segments bounded by curvature minima rather than curvature

maxima or points of zero curvature. For any given curve, there are two directions in which

it can be traversed (two ”curve orientations”). A reversal of the traversal direction (equiv-

alent to a figure-ground reversal) yields a significantly different codon description, i.e., it

is not the case that a reversal of direction simply equates to a reversal of the string de-

scription. As a consequence of this difference, part segmentation leads to a different set

of parts for each description, and hence for each figure-ground interpretation. The effect

of figure-ground reversal is illustrated in Figure 2.6. The curve orientation shown on the

left yields the description ­^`$®9­^a°­4`$¬7a$­^a , a reversal of traversal direction (the alternative

orientation, shown on the right) yields the somewhat different description ¬<a$­^a°­4`$¬7a!®R® .
The dashed lines indicate the likely part segmentation in each case, given the relative po-

sitions of the negative curvature minima. We see that a change in orientation results in a

markedly different set of parts.

0

1+ 1

1 1+

2

1+

0
1

0

2 2

Figure 2.6: A change in curve orientation yields a different codon description

Chapter 2. Existing schemes 41

String constraints

Legitimate strings of codons are subject to certain constraints, since not all pairs of codons

may smoothly join together. Table 2.2 encodes the constraints, as determined by Richards

& Hoffman (1987, Table 1): a tick in % row �3(column z{+ indicates that the head of codon �
may smoothly join to the tail of codon z , i.e., z may follow � in a string description.

¬ ` ¬ a ­ ` ­ a ®
¬ ` ± ±
¬7a ± ± ±
­4` ± ± ±
­^a ± ±
® ± ± ±

Table 2.2: The legal smooth joins between pairs of codons

Both open and closed curves can be described by codon strings. However, Richards

and Hoffman (1987) point out that: “[b]ecause most objects have closed bounding con-

tours, matching to closed codon sequences is of greater interest for shape recognition than

representing open strings” (p. 702). In general, the number of legitimate open and closed

codon strings of length r is much less than the number of possible combinations of codons

without the constraints. For strings of length six, for example, the number of possible com-

binations is ²A³�¤µ´4²¶(¢·A¸A² , while there are actually just 610 legitimate open strings and 33

closed ones. Within the appendices of (Richards & Hoffman 1987), equations are provided

for determining the number of open and closed codon strings of length r , denoted, re-

spectively, by ¹.º=%&r�+ and ¹ g %&r»+ :

¹9º=%&r�+¼¤ ½�¹9º^%&r¿¾À´,+R¾¥¹9º=%&rÁ¾�¸�+ %&rÂ�¡¸�+
¹ g %&r�+Ã¤ ¸AÄ a �
Å ´ %&rÂÆ¡¸�+

Chapter 2. Existing schemes 42

String transformations

Two transforms are provided for converting codon string descriptions, both of which op-

erate on binary representations of codon strings. Each codon is assigned a two-digit binary

number, as follows: ¬ ` (¢¬ aÈÇÉËÊAÊ , ­ `ÀÇÉÌÊ ´ , ­ aÈÇÉ ´ Ê , and ® ÇÉ ´A´ . Note that, although ¬ `
and ¬¶a map to the same binary number, they can be distinguished in a string so long as the

string contains at least one codon not of type ¬ . Given these mappings, the description of

the curve on the left of Figure 2.6 is represented as Ê ´A´A´A´ ÊAÊ ´ ÊAÊ ´ Ê (starting at the bottomleft

codon).

The mirror transform converts the description of a curve into the description of its mir-

ror image, and consists simply of reading the binary representation backwards. For the

curve just cited we get Ê ´ ÊAÊ ´ ÊAÊ ´A´A´A´ Ê which, when decoded, gives ­ ` ¬ a ­ a ­ ` ®9­ a . This

description is a rotational shift of, and therefore equivalent to, the original description,

which is to be expected since the curve is symmetrical about a central vertical axis. The

figure-ground transform converts the description of a curve under one orientation to the de-

scription of the curve under the other, alternative, orientation. The transform consists of

rotating the binary representation by one bit to the right and reading the result backwards.

The description of the curve on the left of Figure 2.6, Ê ´A´A´A´ ÊAÊ ´ ÊAÊ ´ Ê , when rotated by one

bit, gives ÊAÊ ´A´A´A´ ÊAÊ ´ ÊAÊ ´ . Reading the rotated binary string in reverse, we get ´ ÊAÊ ´ ÊAÊ ´A´A´A´ ÊAÊ ,
which decodes to ­ a ­ ` ¬ a ®R®R¬ a . This result accords with the annotated curve shown on

the right of Figure 2.6, i.e., the figure-ground reversal of the original curve.

Rosin’s extended set of codons

Hoffman and Richards’ original set of codons has been extended by Rosin (1993), in the

context of multi-scale representation and matching of curves. The five original codons are

supplemented by a large number of additional codons, in order to facilitate the descrip-

tion of curves that contain straight-line segments and tangent discontinuities. For com-

pleteness, extra codons are also introduced to explicitly represent the ends of open curves.

Chapter 2. Existing schemes 43

Rosin’s extended set of codons supports the description of a much wider range of curves

than Hoffman and Richards’ codons. However, with respect to discriminatory power and

completeness, there are still two noteworthy deficiencies:

� Circular-arc segments are not distinguishable from other kinds of arcs. Rosin’s mo-

tivation for incorporating straight-line segments, but not circular-arc segments, is

principally that “[u]nder perspective transformation straight lines remain straight

lines whereas circular arcs become ellipses. That is, straight lines are an important

feature since they are stable over most viewpoints” (Rosin 1993, p. 290). Another

reason he gives for not including circular arcs is that, if they were to be included, the

extra codons required would make the representation “unnecessarily unwieldy”.

� Although tangent discontinuities are incorporated in the extended representation,

the method by which they are included (the joining of semi-cusp codons) means that

cusps cannot be distinguished from angles.

As well as extending the set of available codons, thereby providing a greater scope,

Rosin’s scheme is geared towards describing a curve at a number of “natural” scales, in

the form of a codon-tree. The use of a tree structure for hierarchical description resembles

the strip-tree representation of (Ballard 1981). The purpose of a multi-scale analysis is to

overcome the problems of noise and minor occlusion that are encountered when only one

level of resolution is available. An important objective of the work presented in (Rosin

1993) is “to make codons a practical representation for applications in computer vision”

(p. 287).

2.3.2 Extremum primitives

An interesting and somewhat different approach to shape description is given by the

process-based descriptions and inference rules of Leyton (1988). Leyton takes the view

that the shapes of certain objects can be meaningfully described in terms of the deforma-

tional processes, both internal and external, acting on the objects. As well as describing

Chapter 2. Existing schemes 44

the shape of an object at some snapshot in time, the theory provides grammar rules which

are capable of accounting for the change in the shape of an object over time. Because of

the nature of the theory, it is restricted in applicability to “natural forms”, such as clouds,

tumours, and embryos, rather than man-made objects, which tend to have straight edges

and sharp corners.

Curvature extrema and processes

According to Leyton’s theory of symmetry-curvature duality, each curvature extremum has

an associated unique differential symmetry axis (under each of the symmetry analyses

SAT, SLS, and “PISA”5) that terminates at the extremum. Along with the symmetry-

curvature duality theorem, an interaction principle states that “[t]he symmetry axes of a

perceptual organisation are interpreted as the principal directions along which processes

are most likely to have acted.” (p. 218). From these assertions, an important connection

between curvature extrema and processes can be made. Specifically, each extremum of a

shape implies a process that is acting along the unique symmetry axis associated with, and

terminating at, the extremum. Figure 2.7 shows a smooth shape containing a number of

positive and negative curvature extrema. The dashed lines indicate the process activity

inferred by Leyton’s theory.

There are four kinds of curvature extremum: positive maxima and minima, and neg-

ative maxima and minima. Within Leyton’s theory, curves are described by strings com-

posed of the following primitives: Í ` (positive maximum), � ` (positive minimum), Í a
(negative maximum), � a (negative minimum), and Ê (representing a point of zero curva-

ture). Each of the four kinds of curvature extremum is given a semantic interpretation, as

listed in Table 2.3.

The representation of a curve in terms of these symbols is illustrated by a process-

diagram, which is an annotation of the curve showing the curvature extremum points,
5Process-Inferring Symmetry Analysis (PISA) is defined by Leyton and shown by him to be the most ap-

propriate analysis for his process-based approach.

Chapter 2. Existing schemes 45

Figure 2.7: A shape and its process-inferring symmetry axes

Extremum type Semantic interpretation
Í$` Protrusion
�P` Squashing
Í a Internal resistance
� a Indentation

Table 2.3: Leyton’s semantic interpretations of curvature extrema

zero-curvature points, and the process traces implied by the curvature extrema. The con-

vention we will adopt here is that curvature extrema are shown as small filled circles,

zero-curvature points as small unfilled circles, and process traces as directed lines. The

process-diagram for the shape shown in Figure 2.7 is given in Figure 2.8. Starting at the

leftmost Íq` , the string description of the shape is as follows:

Í ` ¬E� a Í a � a ¬6Í ` ¬E� a ¬6Í ` � ` Í ` ¬E� a ¬6Í ` ¬E� a ¬

Inferring process history

Leyton derives a set of grammar rules that can be used to generate a process history which

reflects how the shape of an object changes between two instants in time. The rules are

Chapter 2. Existing schemes 46

M m

M+

M+

m
M+

m+

M+

m

M+

m
m

Figure 2.8: The process-diagram for the shape given in Figure 2.7

obtained by considering the possibilities that exist for the continuation and bifurcation of

the four kinds of process. The two rules for continuation, and the four rules for bifurcation,

are listed in Table 2.4, together with illustrative examples. Given the shape of an object at

two developmental stages, the rules can be used to infer the process history between the

two stages, by transforming the description of the earlier shape into the description of the

later one. Of consideration is the order in which the rules can be applied, which it is not

possible to ascertain given just the initial string description. Some processes, for example,

may be more pronounced than others because they may have been acting on the object

for a greater length of time. Leyton relates the time a process has been acting on an object

to the likely amount of deformation. If process / starts acting on an object at an earlier

time than process /!n , then the assumption made is that the effect on the shape of the object

caused by / is greater than that caused by /�n :

“Size-is-Time Heuristic. Size corresponds to time. That is, later processes

have had a shorter time to develop than earlier ones and are thus smaller.”

(p. 232).

By considering different levels of blurring, the relative amounts of time that different

processes have been acting can be established, e.g., if a shape is blurred a great deal, then

Chapter 2. Existing schemes 47

we should expect that only the very earliest processes will be detectable. In (Leyton 1989),

the Size-is-Time heuristic, and the issue of process ordering, is examined in greater detail.

Note that the idea of blurring a shape in order to obtain a coarser description is charac-

teristic of the multi-resolution approach, where noise and fine detail is seen to impinge on

higher-level model matching.

Chapter 2. Existing schemes 48

Continuation rules

x � ` ª � `�É ¬E� a ¬
x Í�a ª Í�a É ¬6Í$`$¬

M+

m

m+

M
m

M+ M+

mm

M+M+

m

Bifurcation rules

Î Í$` ª Í$` É Í$`��P`«Í$`

M+

m+ m+
m+ m+

M+m+
M+

Î � ` ª � `»É � ` Í ` � `
M+ M+

m+

M+ M+

m+ m+

M+

Î Í a ª Í a�É Í a � a Í a M
m m

m

m

MM

m

Î � a ª � a�É � a Í a � a
MM

m
M mm

MM

Table 2.4: Leyton’s grammar rules for process continuation and bifurcation

Chapter 2. Existing schemes 49

Shape-space

The natural forms that fall within the scope of Leyton’s theory have, as their shapes6,

smooth closed planar curves, i.e., curves whose salient points are maxima and minima of

curvature. The set of all such curves corresponds to the shape-space of the theory. Note

that, for mathematical reasons, each shape must have (i) more than three extrema7, and

(ii) an even number of extrema. Using the grammar rules, one can move through shape-

space, i.e., from one shape description to another, in a systematic way. Leyton shows there

are six meaningful stratifications of shape-space based on the grammar rules, where each

“strata-system” is a set of parallel planes (Leyton 1988, Figure 17).

Leyton compares the six grammar rules for process continuation and bifurcation with

a set of codon-grammar rules based on Hoffman and Richards’ contour codons, involving

the five original codons, together with their duals (figure-ground reversals). The codon

grammar contains level-preserving and level-increasing rules. The level-preserving rules

simply replace one codon with another. There are two kinds of level-increasing rules: the

first kind replaces an extremum with a codon, while the second kind replaces a codon with

two codons. The complete codon grammar consists of eighteen rules, and is therefore sig-

nificantly larger in size than the process-grammar. After considering the operations of each

grammar, Leyton concludes that: “the process-grammar has the considerable advantage of

according with intuition concerning the structural relations between shapes. . . [codons] are

essentially cutting and pasting operations. . . In contrast, under the process-grammar, any

change from one structure to another is expressed purely developmentally; i.e. by growth.”

(Leyton 1988, p. 244).

Processes at discontinuities

Hayes & Leyton (1989) extend Leyton’s process-based analysis, by considering the forma-

tion, via process activity, of first-order discontinuities on silhouette contours. The motiva-
6More precisely, the shape of their silhouettes.
7This constraint is given by the Four-Vertex theorem of differential geometry.

Chapter 2. Existing schemes 50

tion for the extension comes from earlier work by Hayes on an ontology for liquids (which

forms part of his naive physics manifesto; see (Hayes 1985) for details). The analysis is

restricted to the formation of sharp bends and cusps at curvature extrema, i.e., “kinks”

(tangent discontinuities) occurring at other places on a contour are not handled by the

theory. The presence of a kink corresponds to the presence of a spike on the curvature

graph. Spikes that are “positive”, i.e., go to Å!Ï , denote outward-pointing kinks, while

“negative” spikes (¾ Ï) denote inward-pointing ones. Concerning notation, kinks are rep-

resented by attaching a subscripted value, indicating spike parity, to each of the original

four extremum-primitive symbols. The kink symbols, then, take the form ÐÈÑÒ , where ÐÓÑ
is the curvature component, Ô is the curvature parity and Õ is the spike parity. If Ô and Õ are of

the same sign, then the kink is a sharp bend, otherwise it is a cusp, i.e., a cusp is a kink

whose curvature graph has a spike of opposite parity to the curvature of the adjoining

curve segments. To summarise, the new scheme consists of thirteen symbols (the original

five symbols, together with eight new kink symbols introduced by adding spike parity):

original symbolsÖ ×@Ø Ù
Í ` � ` Í a � a ¬

sharp bendsÖ ×@Ø Ù
Í `` � `` Í aa � aa

cuspsÖ ×@Ø Ù
Í ` a � ` a Í a` � a`

Kinks are seen as being formed by the action of processes. In order to account for the

formation of kinks, only one rule needs to be added to the six existing grammar rules. The

kink introduction rule, Ú , consists of four transformations, each of which corresponds to

the formation of a kink by one of the four kinds of process. The transformations are listed,

together with descriptions, in Table 2.5. Examples for each of the four kinds of introductory

kinks are given in Figure 2.9 (the figure lies to the left of the traversal directions specified

by the arrowheads). The four remaining kink types are essentially secondary types, in that

their formation must follow the formation of one of the introductory types, and requires

the application and/or reverse-application of one or more of the six original grammar rules.

Chapter 2. Existing schemes 51

Transformation Description
Í `ÛÉ Í `` A protrusion terminates as a sharp bend
�P` É � ` a A squashing leads to a cusp-like indentation
Í�a É Í a` An internal resistance leads to a cusp-like protrusion

�8a É � aa An indentation terminates as a sharp bend

Table 2.5: The four kink-introduction transformations

+m

+
+M

m

+M

Figure 2.9: The four primary sharp bends and cusps

2.3.3 Structural codings

Cinque & Lombardi (1995) describe a multi-resolution approach to shape description and

model matching, based on a process of heat diffusion. In a similar way to Rosin (1993), given

an image of some entity’s silhouette, a smoothing operator is first applied to obtain further

images of the entity at different resolution levels. For each smoothed image, a process of

diffusion is simulated which yields a description of the silhouette contour. The process

consists of the following steps:

1. The contour of the silhouette is heated to a chosen energy value.

2. At each time step a certain amount of heat dissipation is simulated, from the contour

in towards the middle of the silhouette.

3. After a certain number of time steps, the diffusion process is stopped.

4. The temperature values of the contour pixels are thresholded into discrete ranges, and

the contour is segmented and labelled using the symbols that identify each range.

Chapter 2. Existing schemes 52

The example given in the paper uses five discrete ranges for temperature values, al-

though a greater or lesser number of ranges could be used. Each of the five ranges is given

a symbol, and contours are described by strings of symbols. The symbols (primitives) used

are: Ü (“very concave”), x (“concave”), � (“straight”), Ý (“convex”), and Þ (“very con-

vex”). Two quantitative attributes are associated with each primitive: �Pß (the total length

of the segment) and
3ß (the skewness of the segment). In the paper, the silhouette of a fish

is represented at six levels of resolution; the coarsest description is �hÝ x Ý x �hÝ , while the

finest is � x Þ x � x Þ x Þ x Þ x Þ x �¶Þ . From the six string descriptions, a tree representation is

constructed that can be used to match against existing models.

Clearly, the described approach has a strong quantitative aspect, although shape con-

tours are described by strings of symbols after a certain amount of numeric processing has

been carried out. The discrete ranges chosen are essentially arbitrary and so each qualita-

tive symbol has a rather ill-defined meaning, e.g., it is not clear what “very concave” and

“very convex” actually mean.

2.4 Comparisons

In this chapter, we have looked at a number of different schemes for representing two-

dimensional shape. We broadly classified the systems according to whether they were

region-based or boundary-based. Here we compare the various systems by revisiting the

aspects of a shape representation that we considered most relevant to qualitative descrip-

tion, listed at the beginning of the chapter:

� Computability

All of the systems we have considered obtain their descriptions from image data,

with the possible exception of Cohn’s approach, which was developed from a log-

ical perspective, and one could imagine that descriptions need not originate from

quantitative data. Rosin has applied his theory of codons to actual image data with a

certain degree of success. It is worth noting that, of the extended set of codons, those

Chapter 2. Existing schemes 53

containing straight lines, angles, or cusps are the most difficult to extract reliably.

Leyton’s extremum primitives, the essential constituents of his process-based theory,

are similar to the codons, in that proper detection of the rate of change of curvature

is of importance.

� Scope

The range of shapes that can be represented by the region-based systems consists of

closed planar curves; open curves cannot be described, since finite open curves do

not bound regions. Of the region-based approaches, the symmetry-based representa-

tions are capable of describing rectilinear shapes, although the symmetry axes asso-

ciated with such shapes are not as intuitive as those associated with more “natural”

shapes. It is possible to describe polygons using Cohn’s scheme, but the predicates

required are not straightforward. A further limitation, specific to Cohn’s scheme, is

that all convex shapes have the same (empty) description, and are therefore indistin-

guishable. The range of shapes that can be represented by the boundary-based sys-

tems include both closed and open curves, although only Rosin explicitly deals with

the representation of the ends of curves. Hoffman & Richards’ set of contour codons

and Leyton’s initial set of extremum primitives are limited to describing smooth,

continuously differentiable, closed curves. Hayes and Leyton’s cusp extension in-

creases the scope of the extremum primitives by incorporating certain sharp bends

and cusps, but there still remain some discontinuity variants that cannot be repre-

sented by their scheme.

� Primitives

Under the region-based systems that use symmetry axes, there are two basic con-

stituents of a shape description: the symmetry axis itself, and the radius function.

The primitives of Cohn’s scheme are the connection relations | x and w9x , the C1�^v>�<%y�>+
operator, and the various predicates that support increased shape discrimination. Of

the boundary-based schemes, there are five basic contour codons and four extremum

Chapter 2. Existing schemes 54

primitives. Each extremum primitive denotes a particular curvature stationary point.

Codons are curve segments bounded by curvature minima that contain zero, one, or

two points of zero curvature. Rosin presents an extended set of sixty-three codons.

The codons and extremum primitives can be regarded as general descriptors that are

not specific to any particular domain.

� Discriminatory power

Potentially, the symmetry-based systems have the greatest amount of discriminatory

power, because shapes can be re-created from SAT descriptions if enough quantita-

tive information is kept, i.e., if the exact values of the radius function are preserved,

rather than collectively being characterised. Cohn’s scheme is able to distinguish

between two shapes so long as they differ with respect to their concavities; in con-

trast, two different convex shapes cannot be distinguished within Cohn’s scheme.

The basic set of codon contours and extremum primitives have identical discrimi-

natory power, and are able to distinguish two curves that differ with respect to the

number and/or type of their curvature extrema. Note that Leyton’s “ Ê ” primitive

is essentially redundant, as its presence can be inferred from the presence of partic-

ular curvature extrema, i.e., mathematically, a point of zero curvature is necessarily

present between Í ` and � a (for smooth curves).

� Granularity

All of the schemes we have looked at, to a certain degree at least, support the de-

scription of a shape at a number of granularity levels. By granularity levels, here,

we mean different levels of resolution. We can smooth a shape by a suitable process

before deriving a description of the shape; in this way, the issue of granularity is par-

tially separated from the representation itself. Given that, by smoothing a shape, we

can derive a number of different descriptions for it, the degree to which a represen-

tation supports different levels of granularity is dependent on the ways in which the

descriptive elements at different levels can be related. The schemes of Cohn, Rosin,

Chapter 2. Existing schemes 55

and Cinque & Lombardi could be said to have the notion of description at different

levels of granularity “built in”.

� Incomplete information

The region-based systems that generate symmetry axes score poorly here, because

noise and occlusion significantly affect the descriptions that are derived by these

systems. This is because they are essentially techniques that operate on the shape as

a whole, rather than localised portions. The boundary-based schemes, on the other

hand, derive their descriptions by curve traversal and are thus less susceptible to

negative effects caused by incomplete information.

In summary, the schemes we have looked at differ with respect to the primitives they

use and their scopes. The boundary-based schemes of Hoffman & Richards and Leyton

attach importance to the curvature extrema of a shape and neither is able to adequately

represent all open and closed planar curves, i.e., curves containing straight-line segments,

circular-arc segments, tangent discontinuities etc. The two extensions discussed go some

way to addressing the deficiency, but neither results in “complete” scope, i.e., neither ex-

tension permits a truly general class of open and closed curves to be described. This is

understandable, given the motivation behind each of the schemes we have examined. In

no instance has the primary goal been to ensure that “all” planar curves can be adequately

represented. An important objective of the general theory that we develop in this thesis is

to derive a set of shape descriptors that allows a wide range of open and closed curves to

be adequately described.

Chapter 3

Qualitative outline theory

In this chapter, we present a boundary-based qualitative scheme for describing planar outlines,

consisting of seven curvature-type primitives.1 We show how an outline is described by a string

of curvature-type symbols and provide the ordering and closure constraints that ensure a given

string is instantiable as an outline. We conclude by comparing the scheme with the boundary-based

schemes of Chapter 2.

3.1 Curvature types

The scheme consists of the seven qualitative curvature types listed in Table 3.1. The cur-

vature types can be grouped in different ways. The most important distinction, perhaps,

being that between the linelike types, that contribute to the length of an outline (� , � , �),
and the pointlike types, which do not (� , à , á , �). Another important grouping is outward

(� , � , á) versus inward (� , à , �), with � belonging to neither category.

Included as specific types are cusps, which we consider to be qualitatively different

from angles. Note that it seems common in the literature to refer to any tangent discontinu-

ity as a “cusp”, whereas we choose to distinguish between points where the tangents meet

from the same direction and points where they do not, referring to the former kind of point
1The material in this chapter is based on work published in a paper of the same name (Galton & Meathrel

1999).

56

Chapter 3. Qualitative outline theory 57

as a “cusp” and the latter an “angle”. We could have chosen, instead, to combine cusps

and angles by having only inward- and outward-pointing “kinks”. There are two reasons

for not doing so. The principal reason is that cusps are important real-world phenomena,

e.g., they are formed when a spherical object lies on a flat surface, when a container is filled

with a liquid, and in other common situations. The second reason is that it is not the case

that angles and cusps can be treated the same in all situations. An outward-pointing cusp,

for example, cannot always be substituted for an outward-pointing angle. In particular, a

cusp cannot exist between two straight-line segments. The converse, however, is true: a

cusp can always be replaced by an angle of the same orientation.

Notice that there is no separate type for a point of inflection; it was felt unnecessary to

include because the presence of such points can always be inferred. In Chapter 8, where

we show how the curvature types can be specified in terms of simpler components, the

implications of omitting a point-of-inflection type are addressed.

Symbol Meaning
� Convex curve segment
� Concave curve segment
� Straight-line segment

� Outward-pointing angle
à Inward-pointing angle
á Outward-pointing cusp
� Inward-pointing cusp

Table 3.1: The seven qualitative curvature types

The shape illustrated in Figure 3.1 consists of two convex curve segments, together

with one each of the six remaining qualitative curvature types, as indicated. The scope

of the curvature-type representation is restricted to simple closed planar curves that may

include points of tangent discontinuity. Certain kinds of closed curves are excluded. In

particular, fractal curves such as the Koch snowflake are disallowed, as are curves that

contain points of self-intersection. More formally, define a uniform curve segment to be an

Chapter 3. Qualitative outline theory 58

Figure 3.1: A shape annotated with its constituent qualitative curvature types

open segment on which the tangent bearing has derivatives of all orders, and the sign of

each derivative remains constant (Å , Ê , or ¾) throughout the segment. A piecewise uniform

curve is a curve which can be divided into a finite sequence of uniform curve segments

and their meeting points. The scope of the curvature-type representation is restricted to

piecewise uniform curves that are closed and contain no points of self-intersection.

3.2 Describing outlines

An outline is described by a string of curvature-type symbols that reflects the features en-

countered during a traversal of the outline. Curvature-type strings that represent outlines

are interpreted as cyclic, i.e., the feature represented by the last symbol in the string is

followed, round the outline, by the feature represented by the first. In this sense, each

curvature-type string may be interpreted as a ring. The mapping between strings and

rings is many-to-one, that is, a number of different strings may define the same ring.

Given an outline and a direction of traversal, different string descriptions are obtained

depending on the point at which the traversal is started. However, the different strings

Chapter 3. Qualitative outline theory 59

may be considered equivalent because they all correspond to the same ring. The outline

in Figure 3.1, for example, when traversed in a clockwise direction, starting from � , yields

the string �sá�����������à . A different starting point, for example � , yields the string

����à��Óá������ . Since the two strings are cyclically-shifted versions of each other, they

must correspond to the same ring and, therefore, represent the same outline type.

3.2.1 Traversal direction and qualitative symmetry

The direction in which an outline is traversed is significant, because the ring descriptions

that correspond to the two possible directions will, in general, be different. Note that a

reversal of direction does not affect the presence of the particular curvature types that

constitute an outline, rather, a change in direction results in a concomitant change in the

ordering of the curvature types. Consider again the outline in Figure 3.1. If we start at � , as

before, but traverse in an anticlockwise direction, we get �
à�����������á . This string cannot

be cyclically shifted so that it matches the string obtained when traversing in a clockwise

direction. Hence, it corresponds to a different ring. To summarise, there are two rings

associated with an outline, one for each direction of curve traversal. We have referred to

the two directions as “clockwise” and “anticlockwise”. During clockwise traversal, the

region bounded by the outline (the figure) lies to the right as we move along the curve.

Conversely, for anticlockwise traversal, the figure lies to the left. Note that the relative

placement of figure and ground must not change during traversal, i.e., the figure must

either be always to the right or always to the left. This is Hoffman & Singh’s (1997, p. 45)

Principle of consistent orientation.

Two outlines that are mirror images of one another will have descriptions, under a

particular direction of traversal, that are reversals of one another. This is illustrated by

outlines (a) and (b) in Figure 3.2. Assuming clockwise traversal, outline (a) is described by

���
� and outline (b) by ����� (a reversed permutation of (a)’s description). Note that we

can only distinguish between (a) and (b) if we are consistent with the traversal direction,

i.e., we get the same ring for both outlines if we traverse one clockwise and the other

Chapter 3. Qualitative outline theory 60

anticlockwise. If we wished, we could decide that an outline is equivalent to its mirror

image, in which case outlines (a) and (b) would be considered identical.

(b) (c)(a)

Figure 3.2: Outlines illustrating qualitative symmetry

As a consequence of the qualitative nature of the curvature types, two outlines which

are not precise mirror images of one another may still be so regarded in a qualitative sense.

In particular, if outline Ð has a description that is a reversed permutation of outline 2
(under the same traversal direction), then Ð may be considered a qualitative mirror-image

of 2 , and vice versa. What this means is that Ð and 2 may be smoothly transformed, in a

way that preserves the existence and ordering of their constituent curvature types, so that

they are precise mirror images. With respect to a single outline, we can define the notion

of qualitative symmetry: an outline may be considered qualitatively symmetrical iff the ring

description obtained via clockwise traversal is the same as that obtained via anticlockwise

traversal, in which case the outline can be smoothly transformed (as previously described)

so that it has (at least) one axis of symmetry. Outline (c) in Figure 3.2, for example, has one

axis of symmetry and is described by ���
àâ� . All outlines with the description �ã�
à�� are

qualitatively symmetrical because a reversal of ���
à�� yields �
à��
� , which corresponds

to the same ring as that given by ���
à � . Every outline that is described by a string of

length less than three is necessarily qualitatively symmetrical. Outlines with odd-length

descriptions of length three or greater, however, cannot be qualitatively symmetrical. Pos-

sessing qualitative symmetry is a necessary condition for an outline to actually have an axis

of symmetry (cf. (Cohn 1995, Section 5)).

Chapter 3. Qualitative outline theory 61

3.2.2 Canonical form of a description

Given the set of strings that describe an outline, we can choose one of the string descrip-

tions to be the canonical one. We do this by defining a lexicographic ordering on curvature-

type strings and then, for a given outline, choosing that string which occurs earliest in the

sequence. Although any ordering of the types would suffice, we will order them as they

are listed in Table 3.1, i.e., � , � , � , � , à , á , � . Since an outline must contain at least one

linelike segment, every canonical string must begin with either � , � , or � . The outline in

Figure 3.1, when traversed clockwise, has the canonical description ��à���á�������� . Any

candidate description of an outline can be transformed into the canonical description by

a cyclic shift (together with a reversal if mirror-image outlines are considered equivalent).

Note that, although an outline consisting of r curvature types has r candidate string

descriptions (as there are r different places the traversal could start at), the number of

distinct candidates may be less than r . A triangle, for example, has six candidate descrip-

tions but only two different strings, namely ���«���«��� (the canonical one) and �s�R�s�R�s� .
A canonical description, then, does not define a unique starting point for traversing an

outline, rather, it provides a single string with which to represent an outline.

3.2.3 Outline tracing

One way of obtaining a description of an outline is to trace it, noting the change in the

direction of the tangent to the curve throughout the traversal. Each of the curvature types

may be identified by the effect that it has on the change in tangent bearing, e.g., we know

we have a straight-line segment if the tangent bearing remains unchanged over a stretch of

curve. Given that we have some method of tracing round an outline whilst keeping track

of the change in tangent bearing (with respect to some arbitrary fixed reference point), we

can determine the curvature types that constitute an outline’s description, as follows:

� Begin a clockwise traversal of the outline, starting at any point on the outline.

� If the tangent bearing changes continuously, then we have one of � , � , or � , de-

Chapter 3. Qualitative outline theory 62

pending on whether the bearing is (in a clockwise sense) increasing, decreasing, or

constant.

� A discontinuous change in the tangent bearing signifies the presence of a pointlike

type, i.e., one of � , à , á , or � . If the clockwise change is less than 180 ä , then we

have � , if it is more than 180 ä , we have à . A change of exactly 180 ä indicates the

presence of a cusp. In order to ascertain whether the cusp is outward-pointing or

inward-pointing, we need to check where the section of curve after the cusp is, in

relation to the section of curve before the cusp. If the former is to the left as seen

from the latter, then we have � , if to the right, we have á .

� If, on returning to the starting point, the last curvature type encountered is the same

as the first, omit it.

The above procedure is for clockwise traversal. The procedure can be modified for an-

ticlockwise traversal by simply replacing occurrences of “clockwise” with “anticlockwise”,

and swapping “left” with “right”.

3.2.4 Ordering and closure constraints

Up until now, our attention has been focussed on the relationship between an outline and

its curvature-type description. If we are given a string, we would like to be able to deter-

mine whether or not the string is valid, i.e., whether there actually exists an outline that

has the string as one of its candidate descriptions. We address the process of generating

valid strings, which is also of importance, in the next section. Clearly, a string composed

of an arbitrary sequence of curvature-type symbols is not likely to be legal, because it may

not include enough symbols to ensure closure, or it may contain subsequences that are

unrealisable. There are two kinds of string constraints that need to be considered: order-

ing constraints, that determine how the types may be “put together” to form a string, and

closure constraints, that specify which types are required in a string in order for it to be re-

alisable as an outline. A cyclically permutable string of curvature-type symbols is subject

Chapter 3. Qualitative outline theory 63

to the following ordering constraints:

� It must not contain two consecutive occurrences of the same curvature-type symbol.

� It must contain no two consecutive pointlike types.

� Any occurrence of either � or á must be adjacent (on at least one side) to an occur-

rence of � or � respectively.

To ensure that a string is realisable as an outline, the following closure condition also

needs to be met (note that this is an unproven claim):

� To ensure closure, a string must either (i) contain at least one convex curve seg-

ment (�), or (ii) contain at least three outward-pointing kinks (of which there are

two kinds: � and á).

A string is realisable as an outline, and referred to as valid, if it adheres to all four con-

straints listed above. The simplest valid string is � , which represents convex curvilinear

closed curves without tangent discontinuities, e.g., circles, ellipses, etc. Valid strings of

length ræåç² necessarily contain at least one � , because the presence of three outward-

pointing kinks requires the presence of at least three linelike types (a consequence of the

second ordering constraint). There are five outline types of length two, and sixteen outline

types of length three (or just eight types if reflections are considered equivalent). Exemplar

shapes for each of these types are given in (Galton 2000).

3.3 Outline classes

The seven qualitative curvature types, together with the ordering and closure constraints,

may be used to define a language containing all of the valid curvature-type strings. Un-

der a particular traversal convention, every outline which falls within the scope of the

curvature-type theory has a single ring associated with it, which corresponds to a num-

ber of curvature-type strings, each of which is constrained by the ordering and closure

Chapter 3. Qualitative outline theory 64

conditions. Let �9H denote the language consisting of the full set of valid strings. The al-

phabet of �EH , then, is given by the complete set of curvature types: �:�1(4�1(*�7(4�1(4à8(4á1(4� � .
We use the word “full” when describing �.H because, rather than containing just a single

string for each possible ring, �6H contains all of the distinct strings that correspond to each

possible ring. So, for the ring corresponding to the outline in Figure 3.1, which consists

of eight curvature-type symbols, all of the eight distinct strings that represent the ring are

contained within �9H . Since we can specify, for each ring, a single canonical string descrip-

tion (see Section 3.2.2), a more parsimonious set is that which contains only the canonical

strings. Let such a set be denoted by � g . The languages �9H and � g , which we may refer to

as outline languages, can be used to determine whether or not a given curvature-type string

is valid. Specifically, a string Ð is valid if it is contained within �QH , or its canonical form is

contained within � g . Grammars that generate the strings of outline languages can be used

to verify that a given string is in a particular outline language; such outline grammars can

also be used for constructing shapes of a particular outline type.

In Appendix A, a grammar for generating valid string descriptions is presented2 and

its construction is explained. The grammar, which we’ll refer to here as # , is regular and

constructed in such a way that it generates all of the canonical string descriptions. How-

ever, as well as the canonical descriptions, other valid strings are also generated. This is a

side-effect of limiting the complexity of the grammar. A grammar that generates all and

only the canonical strings is necessarily non-regular (a proof is provided in Section A.1.1).

The language generated by # may be considered a “compromise” between the outline

languages �9H and � g , since �P%5#8+9�À�EH and �Q%5#8+6�À� g .

3.3.1 Sublanguages and subgrammars

By considering subsets of the seven curvature types, we can define sublanguages of the full

set of outlines and derive, from the full grammar given in Appendix A, the corresponding

outline grammars that generate them. Some important classes of outlines, and the subsets
2Consisting of 95 rules, with 35 non-terminal symbols.

Chapter 3. Qualitative outline theory 65

they are generated from, are listed in Table 3.2.

Subset Outline class
�:�1(4�1(4�1(4à8(4á1(4� � Curvilinear outlines – i.e., no straight-line segments
�:�1(4�1(*� � Smooth outlines: no cusps or angles
�:�1(*�7(4� � Convex outlines
�^�7(4�1(4à � Polygons: no curved segments
�:�1(*� � Convex smooth outlines
�:�1(4� � Convex curvilinear outlines
�^�7(4� � Convex polygons

Table 3.2: A selection of valid curvature-type subsets

As an example, consider the convex figures, which are generated by a grammar based

on a set of three curvature types: �:�1(*�7(4� � . All convex figures have, as their descriptions,

curvature-type strings containing some combination of convex curve segments, straight-

line segments, and outward-pointing angles; none of the other four types are permitted,

since they each necessitate the presence of a concavity. A regular grammar that generates

the language of convex figures can be derived systematically from # , by following the

procedure given in Section A.2. The eighteen rules extracted from # that generate the

convex figures are listed in Table 3.3.

The rules of the grammar essentially reflect a partitioning of the set of convex figures

into (1) the set of convex figures containing a convex curve segment (the descriptions of

which are generated by the first two rules of line one together with the middle block of

rules) and (2) the set of convex polygons (generated by the last rule on line one together

with the last block of rules).

Not all curvature-type subsets are valid. Consider, for example, the subset �^�7(4à1(4á � ,
which does not define a class of outlines because, even though it contains an outward-

pointing kink (to “ensure closure”), a concave curve segment must adjoin an outward-

pointing cusp on at least one side. Since the subset doesn’t contain � , none of the curves

that are generated from the subset can be closed. It turns out that, of the 127 possible

Chapter 3. Qualitative outline theory 66

 É �éè!�Àê8ë�è)�^�'ì

ê ë É ��ê ì è!��Ð
ê ì É �Àê ë è,í
Ð É �Àê ë è^��ê ì è,í

�'ì É �À� �
� � É �A#1ì
ì É � # �
#�� É �^î°ì
î ì É �Àî �
î � É �^ï ì è4í
ï4ì É �Àî �

Table 3.3: A regular grammar that generates the convex figures

curvature-type subsets (excluding the empty set), only 62 are valid (in the sense that they

define a class of outlines).3 The valid subsets, along with the rules used to determine them,

are listed in Section A.2.

3.4 Quantitative considerations

A consequence of the qualitative nature of the curvature types is that two outlines that

look markedly different may nonetheless have the same curvature-type description. An

example of this is shown in Figure 3.3, where five different exemplars are given of the

description ���8��� . It would not be true to say, perhaps, that the differences between these

outlines are purely quantitative, but they are quantitative inasmuch as they have to do

with the relative lengths and curvatures of the linelike segments. A partial solution to this

deficiency would be to incorporate ”semi-qualitative” information into string descriptions.

As a first attempt at increasing discriminatory power, we might consider including the

following kinds of information:
3It is interesting to note that only a small number of these have well-recognised names.

Chapter 3. Qualitative outline theory 67

� The relative orientations of angles and cusps

Each pointlike symbol could be annotated with an index such as “ ð ”, “ ñ ”, “ � ”, or

“ ò ”, depending on whether the angle or cusp is pointing upwards, downwards, to

the left, or to the right. The five outlines in Figure 3.3, for example, are all described

by �8�8�!� . By including orientation information as subscripted symbols, the first

two outlines are represented as �!��óN�!�Nó , and the remaining outlines as �8��ô	�8�.õ ,

�!�NóP�8�Qö , and �8�Nô	�8�Qö .

� The relative lengths of the linelike segments

Each of � , � , and � could be annotated with a symbol indicating the length of the

segment, e.g., “
 ”, “ ÷ ”, and “ � ”, according to whether the segment is short, of

medium length, or long.4

� The relative positions of the pointline types

For this extension, a curvature-type string would most likely be accompanied by

some additional data structure encoding the position of each pointlike element rel-

ative to each of the others. Relevant positional schemes include those of Latecki &

Röhrig (1993) and Schlieder (1996).

The extensions listed are semi-quantitative inasmuch as they depend on the underlying

quantitative information that defines an outline. Because they introduce symbolic infor-

mation that is non-numeric, each could be considered as essentially a qualitative extension.

A significant side-effect of introducing such additional information is that the closure con-

straints would need to be modified accordingly. Different extensions are likely to interact

with one another, e.g., fixing the orientations of the pointlike elements could impose con-

straints on the possible relative lengths of the linelike ones. The detailed working out of

these constraints is likely to be problematic.

Even if the above kinds of information are adequately incorporated into the description

of an outline, there will still be outlines that, while looking very different from one another,
4Note that an annotation scheme such as this, however, is subject to the criticism we levelled earlier at

Cinque and Lombardi’s “very concave/convex” symbols (see end of Section 2.3.3).

Chapter 3. Qualitative outline theory 68

still share the same curvature-type description. This is illustrated by the two outlines in

Figure 3.4, which do not look at all similar; it is not clear how, in this case, the two outlines

can be distinguished using purely local information.

Figure 3.3: Five distinct exemplars of the outline type �������

Figure 3.4: Two dissimilar-looking outlines described by �����
�����ã�
�

3.5 Summary and comparisons

In this chapter, we have presented a boundary-based representation for planar shapes,

consisting of seven qualitative curvature types. Throughout the remainder of this thesis we

will refer to the representation as ”QOT”. We have shown how outlines are described by

strings, and provided the ordering and closure constraints that are required to determine

string validity. Essentially, QOT provides a formal language for describing outlines. A

regular grammar that generates all of the canonical string descriptions in the language is

given in Appendix A.

Chapter 3. Qualitative outline theory 69

We can compare QOT with the two boundary-based schemes of Leyton and Hoffman

& Richards. The first important difference relates to the scope of the schemes. QOT en-

compasses a larger class of shapes, by providing distinct primitives for straight-line seg-

ments and tangent discontinuities. In contrast, the other two schemes are essentially lim-

ited to the description of smooth curves given by the outline class �:�1(4� � . This differ-

ence reflects the design goals of the schemes; an important concern of QOT is to provide

a set of types that is complete, in the sense that a wide range of outlines can be repre-

sented. With the other schemes, recognition of object silhouettes is the goal, and the most

salient points on an outline are considered to be curvature extrema. Representing a polyg-

onal outline in QOT is straightforward, since we have distinct types for a straight line

and outward/inward pointing angles. Although it would perhaps not be correct to claim

that polygons cannot be represented by the other schemes, only an approximation using

maxima and minima is possible. The extended set of extremum primitives, that includes

“cusps”, does increase the scope of Leyton’s representation, but only certain kinds of cusps

are represented, i.e., those that may be formed at curvature extrema. Asymmetrical cusps

are not included in the representation.

The second important difference is the discriminatory power of the schemes, i.e., what

kinds of curves can be distinguished by QOT but not by the other two schemes, and vice

versa. Clearly, those outlines that fall outside the scope of the representations of Leyton

and Hoffman & Richards cannot be distinguished from one another in those schemes. In

particular, outlines that are not curvilinear and which contain angles and cusps can only

be distinguished by QOT. However, even though the other two schemes are restricted

to outlines of the class �:�8(4� � , by identifying points of curvature maxima and minima

they are able to make finer discriminations within the class than QOT can. Two curve

segments that differ only as to the number of curvature extrema they contain cannot be

distinguished by QOT, whereas under either of the other schemes they are distinguishable.

We can see, then, that there is a tradeoff between scope and detail. The scope of QOT is

large, in comparison with the scope of the two other schemes, but by having a large scope

Chapter 3. Qualitative outline theory 70

and only a small set of primitives, the amount of detail that can be represented by QOT

is limited. Note that, interestingly, both the scope and discriminatory power of Leyton’s

extremum primitives and Hoffman & Richards’ contour codons are identical, even though

the primitives used by each scheme are different. Essentially, both schemes record the

number and ordering of the curvature extrema that make up an outline. For Leyton, the

extremum points themselves are important, for Hoffman & Richards, segments of curve

containing extrema are attributed greater salience. We have considered how, by adding

extra semi-qualitative information, QOT descriptions can possess greater discriminatory

power. However, the extensions we discussed do not increase the discriminatory power

of QOT with respect to curvature extrema.

Even though there are important differences between the boundary-based schemes we

have been considering, each scheme possesses primitives that are based on variations in

curvature. This underlying similarity suggests that an analysis of qualitative curvature

variation may yield a theory that provides a unifying account of boundary-based schemes.

In the next four chapters we undertake such an analysis, and develop a theory of the

boundary-based approach to describing shape, which we call qualitative boundary theory

(QBT). After this, in Chapter 8, we apply QBT by formally specifying the primitives of

each of the boundary-based schemes we have been discussing, highlighting some interest-

ing and important differences that underlie their primitives.

Chapter 4

The atomic tokens

In this chapter we derive an unbounded hierarchy of atomic tokens by considering tangent bearing

and its successive derivatives. We show how a curve may be described by a string of atomic tokens

at a particular level in the hierarchy and how the relevant syntactic constraints can be visually

encoded in a graph.

4.1 Deriving the hierarchy of atomic tokens

We begin by considering the curve property of tangent bearing. At each point on a curve,

the tangent to the curve at the point is either defined or undefined. By tangent bearing, we

mean the angle that a tangent makes with respect to some fixed direction, e.g., “North”.

Given a curve, we can plot tangent bearing, Õ , against arc length, ø . The rate at which

the tangent bearing changes along a curve gives us curvature, i.e., curvature is the first

derivative of tangent bearing. We can plot a graph of curvature, � , against arc length, ø .
If we want, we can obtain a further plot by considering the rate of change of curvature,

� n , which is the second derivative of tangent bearing. We need not stop doing this, there

being an infinite number of associated plots for each curve. Our representation is based

on a discretisation of Õ and its successive derivatives (� , � n , � n n , etc). For tangent bearing

we use the quantity space �,ñ�(@ð � , because we’re only interested in whether Õ is defined

71

Chapter 4. The atomic tokens 72

(ñ) or undefined (ð). Curve points where the tangent bearing is undefined are perceived

as angles or cusps. Note that, by not distinguishing between different values of defined

tangent bearing, we ensure that the resulting representation is invariant with respect to

translation, rotation, and uniform scaling transformations. For each of the derivatives of

tangent bearing, we use the quantity space � Å (Ê (4¾1(@ð � , since a derivative may have a

value that is positive, zero, negative, or undefined.

4.1.1 Curve states

Associated with each point / on a curve is a sequence of qualitative values, representing

Õ , � , � n , etc. The complete curve state at / corresponds to an infinite sequence of values. We

write ù<ú,� to denote the û th component of the curve state � . Not all component sequences

give rise to valid curve states. If a component has a value other than ð , then the value

of the next component is unconstrained. If, however, a component does have the value

ð , then all subsequent components must also be ð . More formally, a curve state � must

satisfy the following constraint:

%fücû{+@%Aùýú)�s¤§ð¼þ ù�úK` � �«¤ÿð�+

A partial curve state at / is any initial v -tuple of the complete curve state. So if � ¤
¨ ñ�(Å © , for example, then ù � ��¤ ñ , ù ; ��¤ Å , and � is a partial curve state that is assigned

to points on a curve where the tangent bearing is defined and the curvature is positive.

We refer to a partial curve state with û components as a level- û state. Given the com-

plete set of states for some level û , it is straightforward to generate the set of states for

level û Å ´ . Each state � , at level û , generates a set of level- û Å ´ states,
�

, as follows (where

zq¤ ù ú �):

� ¤
���� � ¨������ (oz<(@ð © � if z$¤ÿð
� ¨������ (oz<(Å © (¨������ (oz<(Ê © (¨������ (ozý(4¾ © (¨������ (oz<(@ð © � otherwise

There are two partial curve states with one component:
¨ ñ © and

¨ ð © . From these two

states we can generate the five states of level 2 and then, from those, the fourteen states of

Chapter 4. The atomic tokens 73

level 3:

¨ ñ © ª ¨ ñ�(Å © (¨ ñ�(Ê © (¨ ñ�(4¾ © (¨ ñ�(@ð ©¨ ð © ª ¨ ð�(@ð ©
¨ ñ�(Å ©9ª ¨ ñ�(Å (Å © (¨ ñ�(Å (Ê © (¨ ñ�(Å (4¾ © (¨ ñ�(Å (@ð ©¨ ñ�(Ê ©�ª ¨ ñ�(Ê (Å © (¨ ñ�(Ê (Ê © (¨ ñ�(Ê (4¾ © (¨ ñ�(Ê (@ð ©¨ ñ�(4¾ ©9ª ¨ ñ�(4¾8(Å © (¨ ñ�(4¾1(Ê © (¨ ñ�(4¾1(4¾ © (¨ ñ�(4¾1(@ð ©¨ ñ�(@ð ©Eª ¨ ñ�(@ðE(@ð ©¨ ð�(@ð ©«ª ¨ ð�(@ðE(@ð ©

Table 4.1: The partial curve states of levels 1, 2, and 3

For each point on a curve we can assign a partial curve state of û components, so we

could theoretically represent a curve by providing a mapping between curve points and

partial curve states. However, such a mapping would be infinite and therefore of no practi-

cal use. Because our state components take qualitative values, however, certain states may

persist over intervals of curve and, therefore, support mappings that are finite. A curve

state may have an interval and/or a point interpretation. A state that has an interval inter-

pretation may persist over an interval of curve, and a state that has a point interpretation

may hold at a single curve point, without holding on any interval adjoining that point. An

atomic token identifies a particular interpretation of a partial curve state.

4.1.2 Interval and point interpretation

For each set of level- û curve states, we obtain a corresponding set of level- û atomic tokens

by considering the allowable interpretations of each state. A state may support an interval

interpretation, a point interpretation, or both. An atomic token (or “atom”) is a particu-

lar interpretation of a particular state, and is identified by a signature consisting of a se-

quence of qualitative values. An underlined signature indicates an interval interpretation;

a non-underlined signature indicates a point interpretation. The atom D+, for example,

represents the interval interpretation of the state
¨ ñ�(Å © , and the atom D+-0 represents the

Chapter 4. The atomic tokens 74

point interpretation of the state
¨ ñ�(Å (4¾8(Ê © .

A curve state may hold at a single point iff one of its components is either zero or

undefined. This is because if all components are defined, then all of them are continuous,

and hence the values Å and ¾ can only hold over intervals. A curve state may persist

over an interval iff none of its components are undefined and, whenever a component

has the value zero, the next component also has the value zero. The following predicates,

therefore, can be used to determine the interpretations that are supported by a curve state:

m�e¶���,� - ���,�IY=U5mh%y�c+
	 %��{û{+@% ù ú �s¤§ð�
«ù ú �s¤ Ê +
���,�IY=U�VA�:l - ���,�IY=U5mh%y�c+
	 %5���~û{+@% ùýú)�s¤§ð1+3��%fücû{+@% ù�ú^�s¤ Ê þ ùýúK` � �«¤ Ê +

4.1.3 Atomic hierarchy

For each set of partial curve states (each level) we can use the predicates m�e¶���,� - ���)�GY=Ujm and

���)�GY=UWV=�7l - ���)�GY=Ujm to obtain the corresponding set of atoms. The partial curve states and atoms

for level 3 are as follows:

¨ ñ�(Å (Å ©.ª D++¨ ñ�(Å (Ê ©¡ª D+0 (D+0¨ ñ�(Å (4¾ ©.ª D+-¨ ñ�(Å (@ð ©6ª D+U¨ ñ�(Ê (Å ©¡ª D0+¨ ñ�(Ê (Ê © ª D00 (D00¨ ñ�(Ê (4¾ ©¡ª D0-

¨ ñ�(Ê (@ð ©�ª D0U¨ ñ�(4¾1(Å ©6ª D-+¨ ñ�(4¾1(Ê ©Àª D-0 (D-0¨ ñ�(4¾1(4¾ ©6ª D--¨ ñ�(4¾1(@ð ©Eª D-U¨ ñ�(@ð�(@ð ©�ª DUU¨ ðE(@ð�(@ð ©Èª UUU

Table 4.2: The curve states and atoms of level 3

The first four levels of the hierarchy of atomic tokens are shown in Figure 4.1. Each

atom in the hierarchy (except the atoms D and U at level 1) is a child of a single parent atom

at the previous level, i.e., each atom at level û is derivable from one, and only one, atom at

level ûc¾8´ . We call parent atoms that have more than one child expansive, and those with

only one child non-expansive. An interval atom is expansive iff its last component is either

Chapter 4. The atomic tokens 75

Å or ¾ , otherwise it is non-expansive. A point atom is expansive iff its last component is

not ð , otherwise it is non-expansive. At level 1, then, there is just one non-expansive atom,

U, which propagates through the hierarchy as UU, UUU, and so on. The other level-1 atom,

D, expands into five atoms at level 2; two of which are non-expansive: D0 and DU.

Any atom is either an interval (I) or a point (P), and either expansive (E) or non-

expansive (N), giving us four kinds of atoms: IE, IN, PE, and PN. Each IE atom yields

five children: two IE atoms, one IN atom, one PE atom, and one PN atom. Each PE atom

yields four children: three PE atoms and one PN atom. The non-expansive atoms, IN and

PN, yield a single IN atom and a single PN atom, respectively.

The recursive equations for calculating the numbers of each kind of atom at level û ,
and the actual figures for levels 1 to 6, are as follows:

IE % û{+Ë¤ ¸�� IE % û ¾À´,+
IN % û{+Ë¤ IN % ûq¾À´,+ Å IE % û ¾À´,+
PE % û{+Ë¤ ½�� PE % û$¾�´,+ Å IE % û ¾¡´,+
PN % û{+Ë¤ PN % û$¾¡´,+ Å PE % û$¾À´,+ Å IE % û$¾À´,+

MQ�^kIÔ��o% û{+¼¤ IE % û{+ Å IN % û{+ Å PE % û{+ Å PN % û{+

Level IE IN PE PN Total
1 1 0 0 1 2
2 2 1 1 2 6
3 4 3 5 5 17
4 8 7 19 14 48
5 16 15 65 41 137
6 32 31 211 122 396

Table 4.3: Calculating the number of atoms at each level

Level 2

Level 3

Level 4 DUUU UUUUD-UUD0UUD+UU D000D+00

D++ D+0 D+0 D+- D+U D00

D0+ D00 D0- D0U

D-+ D-0 D-0 D-- D-U DUU UUU

UU

UD

D+ D0 D0 D- DU

Level 1

Figure 4.1: The first four levels of the atomic hierarchy

Chapter 4. The atomic tokens 76

4.1.4 Labelling of the atomic tokens

Atomic signatures are not very easy to read. Therefore, for notational convenience, we

assign each atom at level two and above a suitable descriptive label, according to the fol-

lowing convention: the label begins with “ � ”, “ � ”, “ � ”, or “ � ”, depending on whether

the curvature component is positive, zero, negative, or undefined.1 The remaining com-

ponents (��n&(Z��n n&(�����) are denoted by a superscripted string, whose elements are values taken

from the set � Å (Ê (4¾8(@ð � . The label is underlined if the atom it is symbolising is an interval.

To distinguish between the two distinct kinds of atoms where the curvature component is

ð , we use the label “ ��� ” for atoms where the tangent bearing component is also ð , and

“ �dO ” for atoms where the tangent bearing is ñ . Using the new notation, the first three sets

of atomic tokens are labelled as follows:

Level 1
D w
U ���

Level 2
D+ �
D0 �
D0 �
D- �
DU � O
UU ���

Level 3
D++ � ` D0+ � ` D-+ � ` DUU �dO
D+0 �<_ D00 �>_ D-0 �'_ UUU ���
D+0 � _ D00 � _ D-0 � _
D+- �3a D0- �
a D-- ��a
D+U ��� D0U ��� D-U ���

Table 4.4: The atomic signatures and labels for levels 1, 2, and 3

4.1.5 Kink tokens

We refer to points on a curve where the tangent bearing is undefined as kink points, which

correspond, perceptually, to angles and cusps.2 At each level in the hierarchy there exists

a single kink-point atom labelled ��� , each component of which takes the value ð . Such

atoms singularly represent all of the different kinds of points on a curve where the tangent

bearing is undefined. Clearly, we would like to be able to distinguish between different
1At level 1, D is given the label “ � ” and U is given the label “ ��� ”, where the “ � ” signifies that the tangent

bearing component is undefined.
2A cusp is a point at which two arcs meet from the same direction terminating with a common tangent.

Chapter 4. The atomic tokens 77

kinds of kink points, otherwise we are losing important curve information. In particular,

the two most relevant aspects of a kink point we would like to preserve are its orientation

(whether it is inward-pointing or outward-pointing) and its type, i.e., whether it is an angle

or a cusp.

In order to distinguish between the different kinds of kink points, we incorporate the

following four kink tokens into our representation: � " and � � (for inward- and outward-

pointing angles, respectively), and � � and ��! (for inward- and outward-pointing cusps,

respectively). These tokens have the same status as � � , in that they can be thought of as

appearing at every level in the hierarchy. Note, however, that kink tokens are not truly

atomic, since the process by which the atomic tokens are derived does not produce them.

Instead, we need to introduce them explicitly.

4.2 String descriptions

A curve is described by a string of atomic tokens taken from a particular level in the hierar-

chy. By prefixing descriptions with a symbol indicating curve type, both open and closed

curves can be represented. We use “ " ” for open curves and “ � ” for closed ones. Our con-

vention for relating changes in tangent bearing to curvature is that a clockwise change in

tangent bearing indicates positive curvature, while an anticlockwise change indicates neg-

ative curvature. Thus positive curvature is associated with convex curve segments and

negative curvature with concave segments. A curve can be traversed in one of two direc-

tions. For a closed curve, the direction is that which preserves the intended figure/ground

relationship. For open curves, consistent description dictates that one of the two directions

is chosen as the “default” one.

Shown in Figure 4.2 are two curves that have been annotated with atoms from level 3

of the hierarchy. Note that � _ refers to a convex circular arc (constant positive curvature

over an interval), whereas �b_ refers to a positive curvature extremum; and analogously

with �'_ and �'_ . Given a closed curve there will be, in general, a number of different token

Chapter 4. The atomic tokens 78

strings that describe it. However, as discussed in Section 3.2, we can easily transform one

string into another by cyclically shifting it a certain amount. In this sense, all of the strings

may be considered equivalent. Any one of sixteen level-3 strings may be used to describe

the closed curve in Figure 4.2, two of which are obtained by either starting at �Q" or the

uppermost �>_ :

� � " �<` �<_R�ba �daq��a �'_R�R` ��!��c_ �3Ob�<_ � � �c_ ���$�ý_
�§�>_ �dO3�<_ � � �c_ ���$�<_ � " �c` �ý_R�3a �daq�	a �'_R�R` �#!

The importance of specifying a traversal direction for open curves is illustrated by the

open curve in Figure 4.2, described by "��ba � � �>_ . A reversal of direction yields the de-

scription "§�c_ � " �	a . Note, however, that under a system where “mirror-reflected” curves

are considered equivalent, the direction chosen for traversal is unimportant.

U<

P0
Z0

U U>

Uc

Z0

P+

P

N+
U

Z

N

P0

U>

Z0

P

P0

N0

Figure 4.2: Example curves labelled with level-3 atoms

4.2.1 Levels of description

A curve has a description at every atomic level. The most coarse-grained description is at

level 1, where only the atoms w and ��� are available. By moving down the hierarchy (in-

corporating more qualitative components) we get finer-grained descriptions which reflect

the increase in discriminatory power that extra components provide.

Given the description of a curve at some level û , we can derive all of the coarser-grained

Chapter 4. The atomic tokens 79

descriptions for the curve, i.e., from the description at level 1 through to the description

at level ûc¾8´ . If Ð denotes the description of a curve, $, at level û»� ´ , then the following

straightforward three-step procedure yields the description of $ at level ûc¾8´ :

1. Replace each atom of Ð with its parent.

2. Iteratively replace substrings of the form ��� (where � is a single atom) with � , until

there are no more substrings of the form �ý� .

3. If $ is a closed curve, and the string resulting from the previous step is of length

greater than two, and begins and ends with atoms of the same type, then remove the

last atom in the string.

By applying the procedure to the ellipse shown in Figure 4.3, we get the level-2 descrip-

tion � � , by re-applying the procedure with � � as input, we get the most coarse-grained

description for an ellipse: � w .

P0

P0

P0

P0

P

P P+

P+

Figure 4.3: An ellipse described using atoms from level 3

Although we can derive all coarser-grained descriptions for a curve given its descrip-

tion at level û���´ , it is not possible, in general, to derive any of its finer-grained de-

scriptions. The occasion when it is possible to derive a finer-grained description is when

the description given consists entirely of atoms that are non-expansive, in which case all

finer-grained descriptions are accessible. Consider the description of a square at level 2:

�ÿ� � � � � � � � � � � � . Because both � and � � are non-expansive, we can get the “finer-

grained” description at level 3 by replacing each atom in the string with its single child

Chapter 4. The atomic tokens 80

atom. A square’s level-5 description, for example, is �ÿ� _o_o_ � � � _o_o_ � � � _o_o_ � � � _o_o_ � � .

Another example would be a shape that has the level-3 description " � _ (i.e., a convex

circular-arc segment). For certain shapes, then, there exists a minimal value of û such that

the description of the shape at level û contains only non-expansive atoms. For the square,

û°¤ ¸ ; describing a square at level û���¸ is unnecessary, as it leads to no increase in “quali-

tative precision”. For a circle, we need to go to level 3 to achieve this. In this sense, a circle

might be regarded as a more complex shape than a square.

4.3 Token-ordering graphs

A curve is described by stringing together those atoms that correspond to the “atomic”

qualitative boundary features of the curve. Clearly, some features can occur together and

some cannot. A token-ordering graph (TOG) encodes the constraints that determine the

basic string syntax for a set of tokens. In this section, we show how the transition tables

that underlie such graphs can be systematically constructed for each level of the atomic

hierarchy.

Given a set of atoms, a TOG is a way of pictorially representing two complementary

transition tables that specify which atoms may follow which other atoms in a string. The

interval-interval (“I-I”) table tells us which interval atoms can follow which other interval

atoms. The interval-point-interval (“I-P-I”) table tells us which point atoms and kink tokens

can occur in between each pair of interval atoms. It is the construction of these tables, then,

that we are primarily interested in.

4.3.1 Compatibility matrices

We make use of two compatibility matrices when constructing I-I and I-P-I tables. First,

consider the construction of an I-I table for a given level in the hierarchy. Each cell in an I-I

table, referred to by % row �d(column z{+ , contains a tick iff the interval atom z can directly

follow the interval atom � . Given interval atoms � and z , at level v , we can determine

Chapter 4. The atomic tokens 81

whether or not z can directly follow � by making use of the matrix given in Table 4.5. The

matrix tells us whether or not the û th qualitative components of the atoms � and z are

compatible.

ù ú z$¤ Å ù ú zq¤ Ê ù ú zq¤ ¾
ùýú,�s¤ Å % ùýúK` � �«¤ ¾ &
ù ú �«¤ Ê ù úK` � z$¤ Å % ù úK` � zq¤ ¾
ùýú,�s¤ ¾ & ùýúK` � �«¤ Å %
Table 4.5: The compatibility matrix for I-I tables

The û th component of z is compatible with the û th component of � , and the predicate

SKeh�!m=�)�¢��t:l Y�% û<(oz<(o�c+ holds, iff the condition in the corresponding cell is satisfied. If ù ú � and

ù ú z are of opposing signs then they are definitely incompatible (signified by a & in the ap-

propriate cell), because a derivative cannot change from positive to negative (or vice versa)

without taking the value Ê or ð in between. If an interval over which ù3ú has the value Ê is

followed immediately by an interval over which ùbú is positive, then in the latter interval

it must initially be increasing, i.e., ù>úK` � must be positive. This explains the entry for cell

% ùýú,��¤ Ê (¢ùýú,zq¤ Å + . Analogous explanations hold for the other non-trivial entries in the ta-

ble. Given interval atoms � and z at level v , then, z can directly follow � iff S4�:� - '&ehl�l e)(8%yz<(o�c+
holds:

S4�7� - '&ehl�l e�(!%yz<(o�c+
	 z+*¤�� � %fücû{+@%h´�àÀûså�vÛþ SKeh��m^�)�*��t:l Y:% û<(oz<(o�c+~+

In other words, z and � must be distinct interval atoms (to ensure an underlying state

change), and the components of z must be compatible with the components of � . Note

that, whenever a condition in the matrix refers to an “unavailable” component of an atom

� , i.e., when û Å ´!��v , the condition is satisfied because the value of ù-,A` � � is unconstrained

(since it is not specified). As an example, consider the level-3 interval atoms �R` and �<_ , and

whether �<_ can directly follow �>` . We start by comparing the second component of each

Chapter 4. The atomic tokens 82

atom, since all interval atoms have the same value (ñ) for their first component. Because

both ù ; � ` and ù ; � _ take the value Å , the compatibility condition is % , and therefore

satisfied. The condition of compatibility for the final component pair evaluates to ù � �c` ¤
¾ , since ù ? �c` ¤ Å and ù ? �ý_ ¤ Ê . The condition is satisfied because �3` has no fourth

component (�>` is a generalisation of a set of child atoms that includes the level-4 atom

�c`da).

ù ú zq¤ Å ù ú zq¤ Ê ù ú zq¤ ¾

ù�ú)�«¤ Å
ùýú/.«¤ Å
¦ùýú/.«¤§ð0

% ù ú .«¤ Ê ��ù úK` � �«¤ ¾

��ùýúK` � z$¤ Å +

ù ú .s¤§ð1

% ù ú .«¤ Ê ��ù úK` � ��¤ ¾Q+ ùýú/.«¤§ð0

% ù ú .«¤ Ê ��ù úK` � �s¤ ¾
��ùýúK` � z$¤ ¾P+

ùýú)�«¤ Ê
ù ú .«¤§ð1

% ù�ú2.«¤ Ê ��ù�úK` � zq¤ Å + ù�ú)a � .«¤§ð ù ú .«¤§ð1

% ùýú2.«¤ Ê ��ùýúK` � z$¤ ¾P+

ù ú �«¤ ¾
ù ú .«¤§ð0

% ù�ú2.«¤ Ê ��ù�úK` � �s¤ Å

��ù�úK` � zq¤ Å +

ù ú .s¤§ð1

% ùýú2.«¤ Ê ��ùýúK` � ��¤ Å + ù ú .«¤ ¾3
 ù ú .«¤ÿð0

% ùýú4.«¤ Ê �Óùýú@` � �s¤ Å
�Óùýú@` � zq¤ ¾Q+

Table 4.6: The compatibility matrix for I-P-I tables

Next, consider the construction of an I-P-I table for a given level in the hierarchy. Each

cell % row �3(column z~+ in an I-P-I table contains a list of point atoms that can occur in be-

tween interval atoms � and z . For I-P-I tables, we make use of the compatibility matrix

given in Table 4.6, which differs from the matrix for I-I tables in that the notion of compat-

ibility this time concerns three components rather than just two. Given a point atom . and

interval atoms � and z , at level v , the component ù ú . is compatible with the components

ùýú,� and ùýú)z , and SKeh��m^�)�¢��t:l Y�% û<(5.3(o�3(oz{+ holds, iff the condition in the corresponding cell is

satisfied. A point atom . , then, can occur in between two interval atoms � and z (after �

Chapter 4. The atomic tokens 83

and before z) iff S4�7� - e¶SKS=T:U - t�Y@�5(�YKY=�~%6.d(o�3(oz{+ holds:

S4�7� - e¶SKS=T:U - t�Y@�5(�YKY=�~%6.d(o�3(oz{+7	 %��hÔý(¢ÕPå�vd+@%AùýÑ4.8*¤ ù�Ñ,� �¦ù Ò .9*¤ ù Ò z6+
��%fücû{+@%h´8à¡ûsåÀvçþ SKeh�!m=�,�*��t7l Y�% û<(5.3(o�d(oz~+~+

In other words, the underlying curve state of . must be distinct from the underlying

curve states of � and z , and the qualitative components of . must be compatible with those

of � and z . As before, conditions that refer to “unavailable” components are automatically

satisfied. To illustrate, we shall use the table to determine which point atoms can come

between �È¤¿�3a and z�¤¿�<_ . We have ù ; � ¤çù ; z�¤ Å and ù ? � ¤ ¾1(¢ù ? z�¤ Ê . We want

to know the possible values for ù � . , ù ; . and ù ? . . Since the definition of S4�7� - e7SKS=T7U - t�Y@�5(�YKY=�
imposes no constraints on the first level components, ù � . can be either ñ or ð . For û«¤§¸ ,
the top-left cell of the matrix states that ù ; . may be any of Å , ð , and Ê , but Ê is ruled out

because it requires that ù ? ��¤ ¾ and ù ? z�¤ Å , which contradicts ù ? z�¤ Ê . Moving on to

û�¤ ½ , we consult the middle cell in the bottom row of the matrix. We see that ù ? . may be

either ð or Ê , the additional constraints on the latter value being irrelevant in the present

case, as û Å ´°� ½ . Remembering that if any component is ð , all subsequent components

must be ð too, we derive the following candidate component sequences for . :

¨ ð�(@ð�(@ð © (¨ ñ�(Å (@ð © (¨ ñ�(Å (Ê © (¨ ñ�(@ðE(@ð ©

These four sequences correspond to the level-3 atoms � � , �-� , �ý_ , and �dO . The first con-

dition of S4�7� - e¶SKS=T:U - t�Y@�5(�YKY=� rules out �c_ , because its underlying curve state is not distinct

from that of z . Thus we conclude that only the point atoms �:� , �-� , and �dO can occur in

between the interval atoms � a and � _ .

4.3.2 Transition tables

The set of atoms at level û is the union of a set of interval atoms, ; ú , and a set of point

atoms, < ú , e.g., at level 2 we have ;E;Ó¤Â�:� (*� (4� � and <!;�¤ �^�
(4�dOK(4�=� � . The transition

tables at level û (I-I ú and I-P-I ú) each contain è ; ú è ; cells, one for each ordered pair of in-

terval atoms. We refer to a cell % row �3(column z{+ in the I-I ú and I-P-I ú tables by writing

Chapter 4. The atomic tokens 84

I-I ú %y�3(oz{+ and I-P-I ú %y�3(oz{+ , respectively. Algorithm 4.1 populates the I-I and I-P-I tables for

a given level û1�»´ in the hierarchy.3 The “L”-shaped lines in the algorithm indicate the

scope of each for loop. In the outer loop of the algorithm, each pair of interval atoms
¨ �3(oz ©

is considered in turn. A tick is added to cell %y�3(oz{+ of the I-I table if interval z can directly

follow interval � (step ´ � ´). In the inner loop of the algorithm, a point . is placed in cell

%y�3(oz{+ of the I-P-I table if it can occur in between � and z . If . is �:� , then the algorithm

places in %y�3(oz{+ those kink tokens that may occur in between � and z , according to the fol-

lowing rule: inward- and outward-pointing angles can occur in between any two intervals

(step ´ � ¸ � ´ � ´ � ´), inward-pointing cusps must be flanked on at least one side by an interval

of positive curvature (step ´ � ¸ � ´ � ´ � ¸), and outward-pointing cusps must be flanked on at

least one side by an interval of negative curvature (step ´ � ¸ � ´ � ´ � ½). This rule is derived from

the constraints listed in Section 3.2.4.

Input: û (atomic level)
Output: Populated I-I and I-P-I tables for level û of the atomic hierarchy

>
for each

¨ �3(oz © p?; ú �?; ú do
´ � ´ if S4�7� - ' ehl�l e�(!%yz<(o�c+ then I-I ú %y�3(oz{+#@ ±BA
´ � ¸ for each .�pC< ú do
´ � ¸ � ´ if S4�7� - e¶SKS=T:U - t�Y@�5(�YKY=�{%6.3(o�3(oz{+ then
´ � ¸ � ´ � ´ if .«¤ ��� then
´ � ¸ � ´ � ´ � ´ add �:� " (4� � � to I-P-I ú %y�d(oz~+2A
´ � ¸ � ´ � ´ � ¸ if ù ; �«¤ Å
¦ù ; z$¤ Å then add ��� to I-P-I ú %y�3(oz{+2A´ � ¸ � ´ � ´ � ½ if ù ; �«¤ ¾D
¦ù ; z$¤ ¾ then add ��! to I-P-I ú %y�3(oz{+2A´ � ¸ � ´ � ¸ else add . to I-P-I ú %y�d(oz~+2A

Algorithm 4.1: Populating the I-I and I-P-I tables for a set of atoms

The I-I and I-P-I tables for level 2 of the atomic hierarchy are given in Table 4.7. The I-I

and I-P-I tables for level 3 are given in Tables 4.8 and 4.9 respectively.

3At level 1, I-I EGFH� IG� J is empty and I-P-I EGFH� IG� J contains the four kink tokens.

Chapter 4. The atomic tokens 85

� � �
� ±
� ± ±
� ±

� � �

�
� �dO
�	" �	�
� �

�3O
��" ���
� �

� �dO
�	" �	�
� � � !

�
�dO
� " � �
� � � " � �

�dO
� " � �
� !

�
� �dO
� " � �
� � � !

�3O
� " � �
� !

� �dO
� " � �
� !

Table 4.7: I-I and I-P-I tables for the level-2 atoms and kink tokens

� ` � _ � a � _ � ` � _ � a
�c` ±
�<_ ± ±
� a ± ±
�>_ ± ±
� ` ± ±
� _ ± ±
��a ±

Table 4.8: I-I table for the level-3 atoms

Chapter 4. The atomic tokens 86

� ` � _ � a � _ � ` � _ � a

�c`
� _ � �
�dO
� " � �
� �

� �
�3O
� " � �
� �

� _ � �
�3O
� " � �
� �

�3O
� " � �
� �

�dO
� " � �
� � � !

�dO
� " � �
� � � !

�dO
� " � �
� � � !

�<_
� �
�dO
� " � �
� �

�3O
� " � �
� �

� �
�3O
� " � �
� �

�3O
� " � �
� �

�dO
� " � �
� � � !

�dO
� " � �
� � � !

�dO
� " � �
� � � !

� a
� _ � �
� _ � �
� O �	"
�	� � �

� �
�3O
��" �	�
� �

� _ � �
�3O
��" ���
� �

� �
�3O
��" ���
� �

�dO
�	" �	�
� � � �

�dO
�	" �	�
� � � �

� _ � a
� � �dO
�	" �	�
� � � �

� _
� �
�dO
�	" �	�
� �

�3O
��" �	�
� �

�3O
��" ���
� � ��" ���

�dO
�	" �	�
� !

�dO
�	" �	�
� !

� �
�dO
�	" �	�
� !

� `
� ` � _
��� � O
�	" �	�
��� ��!

� O
��" �	�
�#� ��!

� O
��" ���
�#� �#!

� �
� O
��" ���
�#!

� _ � �
� O
�	" �	�
��!

� �
� O
�	" �	�
��!

� _ � �
�>_ ���
� O �	"
� � ��!

� _ � O
�	" �	�
��� ��!

� O
��" �	�
�#� ��!

� O
��" ���
�#� �#!

� O
��" ���
�#!

� �
� O
�	" �	�
��!

� O
�	" �	�
��!

� �
� O
�	" �	�
��!

� a � O
� " � �
��� ��!

� O
� " � �
�#� ��!

� O
� " � �
�#� �#!

� O
� " � �
�#!

�'_ ���
� O
� " � �
��!

���
� O
� " � �
��!

�'_ ���
� O
� " � �
��!

Table 4.9: I-P-I table for the level-3 atoms and kink tokens

Chapter 4. The atomic tokens 87

4.3.3 Graph correspondence

An “atomic” TOG, so-called because its nodes represent atomic as opposed to non-atomic

tokens, corresponds to a pair of I-I and I-P-I tables and consists of nodes representing

atomic tokens and directed edges representing token-ordering constraints. The nodes for

interval atoms are shown as rectangles and those for point atoms as circles. A detailed

discussion of atomic TOG construction, leading to an algorithm for constructing an atomic

TOG from a pair of transition tables, is provided in Appendix B. The atomic TOG for level 2

of the hierarchy is given in Figure 4.4 and the atomic TOG for level 3 in Figure 4.5. Owing

to space restrictions, the level-3 atomic TOG is presented as two graphs. The lower graph

in Figure 4.5 is the main graph which is supplemented by the upper graph incorporating

the four kink tokens. The upper graph specifies the allowable kink-token occurrences.

The two nodes in the graph labelled ��K and ��K denote, respectively, intervals where the

curvature component is positive or negative. The upper graph can be thought of as an

overlay for the main graph.

Notice that the level-3 atomic TOG is asymmetrical in appearance (because of the place-

ment of the lower �=� node). The graph can be re-drawn to look symmetrical, by introduc-

ing an extra node for � � (and re-distributing the eight paths of the form � É � � É z
among three � � nodes instead of just two), but then the graph no longer has a minimal

number of nodes. Note that, with some thought, it may be possible to modify the node

positions and connections of the minimal graph to attain a symmetrical appearance.

Chapter 4. The atomic tokens 88

U<

Z

c

Uc

U>

U

U

U

U

U

P NZ

Figure 4.4: Level-2 atomic TOG

Chapter 4. The atomic tokens 89

U>

U<

N*P*

U

U

U

U

0Z

ZU

N0

Z0

P+ N+

ZP N

P0 Z0

Z+

NUNUN0PU PUP0

ZU

Uc

Uc

Figure 4.5: Level-3 atomic TOG

Chapter 4. The atomic tokens 90

4.3.4 String syntax

A TOG (of the atomic or non-atomic variety4) visually encodes the basic string syntax for

a set of tokens. Atomic TOGs, which are categorised according to atomic level, encode the

syntax for sets of atoms and kink tokens. A string of tokens k,�okI; ����� k , is derivable from a

TOG iff the path k � É k ; É ����� É k , exists in the TOG. With reference to the level-2 atomic

TOG, for example, the string � � � ��� is derivable, whereas the string � �:!�� is not. A

string of tokens is syntactically valid iff it is derivable from a TOG.

A syntactically valid string may or may not be instantiable as either an open or a closed

curve. The string "�
 is valid iff
 is instantiable as an open curve, and the string ��
 is

valid iff
 is instantiable as a closed curve. Valid strings of the form "�Ð may be written

as L�ÐML , where ” L ” denotes a curve end-point. A string is instantiable as an open curve iff

(i) it is syntactically valid, (ii) it contains at least one interval atom, and (iii) it starts and

finishes with an interval atom, i.e., we consider the interval of points that constitutes an

open curve to be topologically open. A string is instantiable as a closed curve iff (i) it is

syntactically valid, (ii) it contains at least one interval atom, (iii) the first and last atoms

are distinct (if the string is of length greater than one), and (iv) it adheres to a set of closure

constraints. The closure constraints for sets of atomic tokens are beyond the scope of this

thesis, although it seems likely (from the analysis of the QOT curvature types in Chapter 8)

that the constraints for level 2, at least, would bear a strong resemblance to the QOT closure

constraints given in Section 3.2.4.

Listed in Table 4.10 are a number of atomic strings, some of which are syntactically

valid and some of which are not. A check of the appropriate atomic TOG provides ver-

ification. The table also indicates, for each string Ð , whether "�Ð is valid and whether

��Ð is valid. Figure 4.6 provides exemplar curves for those strings in the table that are

instantiable as open and/or closed curves.

4Non-atomic TOGs are covered in Chapter 7.

Chapter 4. The atomic tokens 91

Ð Syntactically valid? "�Ð valid? ��Ð valid?
� ± ± ±
� ± ± �
� ± � �
� � � � �
� � ` � � � �
� � � � �#� ± � ±

�c_ � � �c_ � " �c_ � � a ± � �
�ý_ �c` ± ± �
� ��� � ± ± ±

� ` � _ � a � _ � ` � _ � � �
�ba �c_ �dO<�c_ ��a � � �

�<_'�ba � � �>_ � � �<` ± � ±
aThis string is not instantiable as an open curve because it finishes with a point

atom. It is also not instantiable as a closed curve because a polygon must have at
least three convex vertices.

Table 4.10: A selection of syntactically valid and invalid atomic strings

"�� ��� " � � � � � � ���

" � _ � ` " � �$� � � � ��� � � � _ � a � � � _ � � � `

Figure 4.6: Exemplar curves for the instantiable strings in Table 4.10

Chapter 4. The atomic tokens 92

4.4 Summary

We began the chapter by showing how tangent bearing and its successive derivatives can

be characterised by curve states consisting of a number of qualitative components. By

considering interval and point interpretations of curve states, we derived sets of atomic

tokens. The sets of atomic tokens form an unbounded hierarchy of atoms. Each atom in

the hierarchy which has more than one component has a single parent atom at the previ-

ous level. As we go down the hierarchy from one level to the next, incorporating more

qualitative components, the collection of atoms provided possesses greater discriminatory

power. An important consequence of the quantity spaces chosen for the qualitative com-

ponents is that atomic tokens (and therefore token-string descriptions consisting of atoms)

are invariant with respect to translation, rotation, and uniform scaling transformations.

After introducing the atoms, we gave our conventions for curve traversal and intro-

duced a prefix notation for distinguishing between open and closed curves. An open curve

has a single description (dependent on traversal direction), whereas a closed curve, in gen-

eral, has a number of different, but equivalent, string descriptions. We can choose one of

the strings to be the canonical one by defining an ordering relation on the set of atomic

tokens, and then picking that string description which is lexicographically earliest.

We ended the chapter by showing how atomic TOGs can be constructed for a set of

atoms at any level in the hierarchy, from a pair of transition tables (I-I and I-P-I) that are

generated, in turn, using two compatibility matrices, one for each table. Nodes in a TOG

are associated with tokens and directed edges with token-ordering constraints. A TOG can

be used both to verify the syntax of token-string descriptions and to generate syntactically

valid strings of tokens. We highlighted the difficulty in determining whether a syntacti-

cally valid token string is instantiable as a closed curve, noting that additional constraints

are required to ensure closure.

In the next chapter, we develop a model for representing localised curve features that

are more abstract than those represented by individual atoms.

Chapter 5

Complex tokens

In this chapter we introduce complex tokens capable of representing non-atomic localised curve

features. A complex token is defined as a set of triples, where each triple encodes a leading context,

an identity, and a trailing context. Example token specifications are given and the process of fitting

complex tokens to atomic strings is described. We conclude the chapter by presenting a set of

thirteen relations that may hold between the triples of complex-token specifications.

5.1 Motivation

In the last chapter, we derived a hierarchy of atomic tokens by identifying each atom with

an interval or point interpretation of a curve state consisting of a particular number of qual-

itative components. A curve can be described by a string of atomic tokens, with each token

in the string corresponding to an “atomic” feature on the curve. Many curve features, how-

ever, are “non-atomic”, i.e., there are features that we would like to represent using tokens

which do not directly correspond to individual atoms. For example, a curve feature may

correspond to a particular sequence of atoms, e.g., we might want to identify a “star-point”

with the sequence � � � � (an outward-pointing angle bounded by two straight-line seg-

ments). Some curve features may have a number of such ”identity sequences”, since a

curve feature may represent a set of curve-segment classes. Our star-point curve feature,

93

Chapter 5. Complex tokens 94

for example, along with “bump” (� � � �) and “spike” (� ��!q�), may be a member of a

more general set of “protrusion” curve features. As well as allowing curve features to be

identified with single or multiple identity sequences, there is also a need to take into ac-

count the particular contexts in which identity sequences may occur. A good example of a

curve feature that requires context to be specified is a point of maximum positive curva-

ture, which is one of the primitives of Leyton’s system, where it is labelled Í�` . An Í$`
is identified only with positive stationary points (�3_ atoms) that are preceded by an inter-

val of positive and increasing curvature (� `), and followed by an interval of positive but

decreasing curvature (� a). In other words, some notion of context is required in order to

specify a point of maximum positive curvature.

In the sections that follow, we develop a way of formally specifying complex tokens

that are capable of representing the kinds of non-atomic curve features we have been dis-

cussing.

5.2 Definition of a complex token

A complex token is a subset,
�

, of ��L�(Zí � ¹ K �Ó¹ ` �Ó¹ K ��L�(Zí � , where ¹ is the set of tokens

at a particular level in the atomic hierarchy1 and “ L ” is a symbol denoting the end-point of

an open curve, such that the following conditions hold:

� Each element in
�

is a triple of the form
¨ �N(Zï{(IM © , where:

– � , the leading context, is of the form �ýz , where � pÿ�,íN(NL � and z is a (possibly

empty) string of atomic tokens,

– ï , the identity, is a non-empty string of atomic tokens,

– M , the trailing context, is of the form �ýz , where � is a (possibly empty) string of

atomic tokens and zãp��,íQ(NL � , and
1Including the kink tokens.

Chapter 5. Complex tokens 95

– the concatenation of � , ï , and M (written ��ï�M) yields a string of atomic tokens

that is syntactically valid.

� There is no redundancy in
�

: �6%��¶k�(ok n p � +@%^kO*¤âk n �ãk�¤ ¨ Õ)(o�3(Z� © �«k n ¤ ¨ Ô9Õ,(o�d(Z�QP © + .
A complex token, then, is specified as a set of triples. Each triple contains an identity

string along with the leading and trailing contexts in which the identity must occur in

order for it to identify an occurrence of the feature represented by the token.

5.2.1 Example tokens

The curve features described at the start of the chapter (along with ”tip-of-star-point” and

”tip-of-bump”) are specified as complex tokens in Table 5.1. All but two of the tokens have

the empty string (í) as the leading and trailing contexts of their triple(s). Having the empty

string as a context is equivalent to specifying all possible contexts of length greater than or

equal to one. In other words, the presence of í indicates that context is unimportant.

Xo�I�=U - m�e¶���)� ¤ � ¨ íN(*� � � � (Zí © �
�¢��m - eR' - Xo�I�AU - m�e¶���)�¼¤ � ¨ � (4� � (*� © �
t:T:��m ¤ � ¨ íQ(4� � � � (Zí © �
�¢��m - eR' - t:T7�!m ¤ � ¨ � (4� � (4� © �
XKm��6S*Y ¤ � ¨ íQ(4� �#!$� (Zí © �
m^U e=�*U5T)X@� eh� ¤ � ¨ íQ(*� �	�8� (Zí © (¨ íQ(4� ���$� (Zí © (¨ íN(4� � ! � (Zí © �
Í$` ¤ � ¨ �c` (4�ý_=(4�3a © �

Table 5.1: A selection of curve features specified as complex tokens

5.2.2 Specification levels

A complex token is specified using the tokens that exist at a particular level, û , in the atomic

hierarchy. Given a level- û specification, there necessarily exists an equivalent specification

at level û Å ´ . There may also exist an equivalent specification at level ûc¾!´ , depending on

Chapter 5. Complex tokens 96

the amount of discriminatory power available at that level. For every curve feature that can

be represented by a complex token, then, there exists a level, � , below which specification

of the curve feature is not possible due to a lack of discriminatory power. Knowing that a

curve feature, � , can only be specified at a level greater than, or equal to, � , allows us to

make the assertion that � is a level- � curve feature.

Consider Xo�I�=U - m�e¶���,� as an example. It is specified using atoms at level 2 and is a level-2

curve feature because at level 1 there is no single atom representing a straight-line seg-

ment. The level-3 specification of Xo�I�AU - m�e¶���)� can easily be derived because the atoms that

make up the identity sequence at level 2 (� and � �) are both non-expansive. The level 3

specification is therefore � ¨ íN(*� _ � � � _ (Zí © � . The same analysis applies to �¢��m - eR' - Xo�I�AU - m�e¶���,� .
The t:T7�!m and XKm:�6S¢Y tokens also represent level-2 curve features. This time, however, the

equivalent level-3 specifications cannot be derived so easily, since the identity sequence

of each token contains two expansive interval atoms (� in the case of t:T:��m and � in the

case of XKm��6S*Y). Taking t:T7�!m as an example, its identity sequence begins with an interval of

positive curvature, represented by � at level 2. At level 3, however, five atoms are available

(� ` , � _ , � _ , � a , and � �), allowing different kinds of � to be distinguished. This increase

in discriminatory power has the effect that an infinite number of triples are required to

specify t:T7�!m and XKm:�6S¢Y at level 3. In the next section, we extend the notation so that speci-

fications containing an infinite number of triples can be expressed. The �*��m - eR' - t7T:��m token

serves to illustrate that the presence of expansive atoms in a specification doesn’t necessar-

ily mean that an infinite number of triples are required for the equivalent specification at a

higher level. The important difference is that, for �*��m - eR' - t7T:��m , the � s occur in the leading

and trailing contexts rather than the identity. Therefore (due to the redundancy condition)

we only need to consider, for the leading and trailing contexts, those individual atoms that

can, respectively, end and begin an interval of positive curvature. The atoms of interest are

�c` , �<_ , and �3a , so the level-3 specification of �¢��m - eR' - t:T:��m is as follows:

�*��m - eR' - t7T:��m ¤ � ¨ �d(4� � (oz © è9�3(oz«p��:� ` (4� _ (4� a �R�

Chapter 5. Complex tokens 97

Lastly, consider points of maximum positive curvature, represented by Í ` . To iden-

tify a stationary point of curvature, the rate of change of curvature must be known, so a

point of maximum positive curvature is clearly a level-3 curve feature. Consider the level-4

specification of Íq` . There are four kinds of �>_ , namely �c_Z` , �<_o_ , �<_�a , and �<_T� . The level-3

contexts (�c` and �3a) are expansive interval atoms and so we need to identify the atoms

at level 4 that may end �b` and begin �3a . For �c` we have �c`>` , �c`c_ , and �c`da ; for �3a
we have �3aý` , �3a�_ , and �3a>a . Let U¿¤ �:�c`>` (4�c`c_ (4�<`da � , ; ¤ �:�<_Z`E(4�<_o_=(4�ý_�a�(4�<_T� � , andV ¤§�:� aý` (4� a�_ (4� a>a � . The level-4 specification of Í ` is as follows:

Í$` ¤ � ¨ �G(GWZ(ok © è:�RpCUÁ�XW	p?; ��kEp V �¦S4�7� - e¶SKS=T:U - t�Y@�5(�YKY=�~%YW¢(4�£(okZ+ �
¤ � ¨ �c`da (4�<_o_=(4�ba>a © (¨ �c`da (4�ý_�a�(4�3a>a © (¨ �c`da (4�<_T�>(4�ba>a © �

5.2.3 Regular expressions and grammars

To facilitate the inclusion of regular expressions and grammars in the specification of a

complex token, and to increase legibility, we introduce an alternative way of writing a

specification, referred to as shorthand notation. A triple
¨ �N(Zï{(IM © is written ��\Iï]KM in short-

hand notation, without writing “ í ” as the empty string. A triple written using shorthand

notation is referred to as a ”shorthand sequence”. The specification of m=Ufe=��U5T,X@� eh� , for exam-

ple, consists of three shorthand sequences:

m^U e=�*U5T)X@� eh� ¤ �ã\Z� � � �]:(�\@� � � �]�(�\@� ��!$�] �
The expressive power of a shorthand sequence can be substantially increased by al-

lowing any of its three subsequences to be a regular expression or, alternatively, a label

referencing a (possibly non-regular) grammar. In this way, a shorthand sequence may cor-

respond to a (possibly infinite) number of triples, rather than just one. As an example,

consider the specification of a token representing curvilinear segments of curve that do

not contain any points of undefined curvature. Clearly, we need to deal with an infinite

number of identities. A curvilinear segment is identified by a level-2 atomic string con-

sisting of a particular combination of � , � , and � atoms. The specification in shorthand

notation, using a regular expression as the identity subsequence, is as follows:

Chapter 5. Complex tokens 98

S=T:U�V - XZY@[¤ ��\�%I� Å � +@%5� � Å � � +NK*] �
To present the specification in triple notation we need to list an infinite number of

triples, because S=T:U�V - XZY@[has an infinite number of identities; a separate triple is required

for each of the atomic strings in the language defined by the regular expression:

S=T:U�V - XZY@[¤ � ¨ íN(4� (Zí © (¨ íQ(4� � � (Zí © (¨ íQ(4� � � (Zí © (¨ íN(4� � � � � (Zí © (¨ íQ(4� � � �$� (Zí © (¨ íQ(4� � � � � (Zí © (¨ íQ(4� � � ��� (Zí © (����� �
An alternative to having a regular expression as one of the three subsequences of a

shorthand sequence is to have a label referring to a grammar. The specification for S=T:UWV - XZY@[,
then, can be given with reference to a grammar rather than a regular expression:

S=T7U�V - XZY@[¤ ��\�#Q] � # ª
 É � ê§è:� ê
ê É �1
 è4í

We are now in a position to specify t7T:��m at level 3:

t:T7�!m ¤ ��\�# n] � # n ª
 É � ` ê§è:� a êÿè�� _ Z
ê É �ý_ Z è��<_bC è����6
 è:����

nZ É �<` ê§è:�3a êÿè����.C è:����

n
C É �<` ê§è:�3a ê

n É �<` ñÁè:�3a ñ è:�<_ J
ñ É �ý_ J¦è:�<_<� è:�-�N

n<è,í
J É �<` ñÁè:�3a ñ è:���9� è,í
� É � ` ñÁè:� a ñ

Each subsequence of a shorthand sequence yields a set of strings (consisting of just

one element if the subsequence is actually a single string rather than a regular expression

or grammar label). A shorthand sequence �~\�WA]4k , where � , ï , and M denote the string sets

yielded by � , W , and k respectively, corresponds to the following set of triples:

� ¨ �3(oz<(4[© è��Óps� ��z«p�ï¡�\[�p«M �

Chapter 5. Complex tokens 99

5.3 Token types

A complex token is a formal specification that represents a curve feature or a class of

curve features. The definition we have provided includes only a redundancy constraint (to

ensure parsimonious specifications), no constraints are imposed on the kinds of identity

strings or contexts that are allowed in a specification. Therefore the definition of a complex

token is quite general, enabling a wide range of useful curve features to be specified, such

as those given in the previous section and the remainder of this thesis. A side-effect of the

general nature of the definition, however, is that curve features that we may refer to as

”meaningless” can also be specified. If �Ge]S ¤ �	�ROd\Z�]:� " (3\@� �]:��! � , for example, then it

is not clear that �Ie]S actually represents an entity that we would want to refer to as a ”curve

feature”.

A complex token may be classified according to the characteristics of its specification.

A specification has a size, according to the number of triples it contains and whether it

is finite or infinite. All of the tokens we have encountered thus far are finite and contain

a small number of triples, except S=T7U�V - XZY@[, which contains an infinite number of triples,

since there are infinitely-many curvilinear segments made up of � , � , and � atoms. In

addition to set size, complex tokens can also be usefully classified with respect to three

other attributes: the level of the atomic hierarchy from which the atoms of the specification

are taken; whether the feature represented is linelike (e.g., Xo�o�=U - m�e¶���,�) or pointlike (e.g., Í `);

and context: are the leading and trailing contexts implicit (unimportant), as in the case of

S=T:UWV - XZY@[, for example, or are they explicitly provided (necessary in order to represent the

feature), as in the case of �*��m - eR' - t7T:��m ?
In the remainder of this section, we switch our attention to the issue of information

loss and preservation, the specification of non-regular curve features, and curve-feature

hierarchies.

Chapter 5. Complex tokens 100

5.3.1 Information loss and preservation

In choosing to qualitatively characterise curves by representing them using strings of

atomic tokens, we sacrifice (”lose”) a certain amount of quantitative information. In par-

ticular, information that allows a curve to be precisely reproduced is lost (if the description

is obtained from a curve instance), as is information relating to the size, position, and ori-

entation of the linelike boundary features of a curve. The result is that any given string of

atoms, rather than corresponding to a specific curve instance, represents a whole class of

curves. Such information loss is both inevitable and acceptable, because the purpose of a

qualitative scheme for representing shape is to filter out unimportant quantitative detail,

leaving only information representing the essential qualities of a shape. For our represen-

tational scheme, we have chosen to focus our attention on the characterisation of localised

features that can exist on the boundaries of curves.

The issue of information loss is not restricted to the correspondence between strings

of atomic tokens and individual curves, however. Information may also be ”lost” in the

correspondence between strings of atomic tokens and strings of complex tokens. As far

as information loss is concerned, there exist two kinds of complex tokens. An informa-

tion preserving complex token is one that contains a single triple and one, therefore, that

corresponds to a single fixed string of atoms. For these kinds of tokens, it is possible to

”recover” the underlying atomic string. Almost all of the complex tokens we have spec-

ified thus far have been of the information-preserving variety. Complex tokens which

contain more than one triple are not information preserving. If a string of complex tokens,

for example, contains occurrences of m=Ufe=��U5T,X@� eh� or S=T7U�V - XZY@[, then there will exist portions

of the underlying atomic description which cannot be precisely determined. In the case of

m=Ufe=��U5T,X@� eh� , which has a specification containing three triples (instances), we can be sure that

the underlying portion is one of � � � � , � � � � , or � ��!q� . For S=T7U�V - XZY@[, however, which

has infinitely-many instances, our ”choice” for the underlying portion is unlimited.

Chapter 5. Complex tokens 101

5.3.2 Non-regular features

One way of categorising a curve feature is by the type of grammar required to list the iden-

tities of all the triples of its specification. The identities of all the complex tokens we have

considered so far can be specified using regular grammars. A non-regular feature is one that

requires a grammar with more expressive power than that provided by a regular grammar

to specify its identities and/or leading and trailing contexts. Consider a variant of S=T:U�V - XZY@[,
given by S=T:U�V - XZY@[:n , where each curvilinear segment is ”atomically symmetrical”, i.e., each

identity string within the specification is palindromic. A context-free grammar is required

in this case:

S=T7U�V - XZY@[n ¤ ��\�#Q] � # ª
 É � è�� è�� ê¥� è�� êÈ�
ê É �Óè^�8
q�

A further variant of S=T:U�V - XZY@[would be a token representing curvilinear segments that

contain the same number of positive intervals of curvature (� atoms) as negative intervals

of curvature (� atoms). In this case, the identity strings required constitute a language

which is not regular or context-free.

5.3.3 Feature hierarchies

Subtype relationships between complex tokens (and thus curve features) can be estab-

lished based on set membership. Recall that each triple in the specification of a token

represents an instance of the curve feature represented by that token. In other words, if

the feature � is represented by the token
V

, then each element of the specification of
V

represents a kind of � . Given two curve features, � and � n , represented by complex tokensV
and

V n respectively, we can use set-theoretic operations to deduce subtype relationships,

as follows:

� If
V � V n then � is a kind of � n .

� If
V_^`V n�*¤ba then there exists a curve feature, ��n n , represented by

V n n�¤ V_^cV n , that

is both a kind of � and a kind of �!n .

Chapter 5. Complex tokens 102

Referring back to the specifications in Section 5.2.1, we have Xo�I�=U - m�e¶���,��� m=Ufe=��U5T)X@� eh� ,
t:T7�!mâ� m^U e=�*U5T)X@� eh� , and XKm:�6S¢Y�� m=Ufe=��U5T)X@� eh� , so we can deduce that there are three kinds

of m=Ufe=�*UjT,X@� eh� : Xo�I�AU - m�e¶���)� , t:T7�!m , and XKm:�6S¢Y . The curvature-specific specifications listed in Ta-

ble 5.2 produce the feature hierarchy shown in Figure 5.1.2 In keeping with our convention

for node shapes, pointlike features are represented in a curve-feature hierarchy by nodes

shown as circles, linelike features by nodes shown as rectangles. The nodes containing

question marks indicate that there are other kinds of XIV apart from �P�)d and �!��� (i.e., cur-

vature inflection points), and that there are kinds of �P�)d and �8��� not represented by any

tokens in the list (i.e., maxima and minima where the value of curvature is zero).

XIV ¤ �«\@�ý_<]:(!\Z�>_<]�(�\@�'_<] �
�P�)d ¤ �	�c` \@�<_<]:�ba (b�R` \Z�c_ý]:��a (3�R` \@�
_>]:�	a �
�8��� ¤ �	� a \@� _]:� ` (b� a \Z� _]:� ` (b� a \@� _]:� ` �
Í ` ¤ �	� ` \@� _]:� a �
Í a ¤ �	� ` \@� _]:� a �
� ` ¤ �	� a \@� _]:� ` �
�8a ¤ �	��a \@�'_c]:�R` �

Table 5.2: Complex tokens representing salient curvature points

MM+ m+ m

?max min

sv

??

Figure 5.1: The curve-feature hierarchy for the tokens listed in Table 5.2

2Where ”sv” stands for ”stationary value”.

Chapter 5. Complex tokens 103

5.4 Token fitting

Given an atomic description of a curve, we would like to derive descriptions that consist

of complex tokens, rather than atoms, so that we may reason about the curve at a higher

level of abstraction. Token fitting is a two-stage process by which complex tokens are fitted

to a string of atomic tokens. During the initial triple matching stage, triples with identities

and contexts that match a substring of the atomic description are associated with (”fitted

to”) that substring. During the triple elimination stage, fitted triples are removed if they are

determined to be redundant with respect to the other fitted triples present.

5.4.1 Triple matching

Token fitting is carried out with respect to an atomic token-string,
 , of length v , and a

set of complex tokens,
V

. The first stage of token fitting involves the consideration of

candidate triples taken from each specification in
V

, and determining, for each candidate,

whether it can be fitted to
 and, if it can be fitted, the substring(s) of
 it can be fitted

to. Note that a triple may be fitted to more than one substring, and more than one triple

may be fitted to the same substring. Even though the specification of a complex token may

contain an infinite number of triples, only a finite number of triples need to be considered

from each specification, because
 is finite in length. In particular, given a triple k , if Ô and

� are the lengths of its leading and trailing contexts and Õ is the length of its identity, then

k only needs to be considered if Ô Å Õ Å �°åÿv . There is guaranteed to be a finite number

of such triples in each specification. In certain circumstances, it may be possible to reduce

the size of the set of candidate triples further by using heuristics based on the particular

atoms present in
 .

Once the set of candidate triples has been ascertained, the task of determining which

triples fit which substrings of
 is a straightforward one, involving simple string matching.

The only complication is that, as usual, if
 is a string that represents a closed curve then

it is interpreted as cyclically permutable. The triple matching stage is illustrated for closed

Chapter 5. Complex tokens 104

and open curves by Figures 5.2 and 5.3 respectively. Figure 5.2 contains a closed curve

described at level 2 and a ring diagram showing how triples fit to the various substrings

of its description. Here, the set of complex tokens we consider in the token fitting process

consists of all the specifications given in Section 5.2. A ring diagram consists of an inner

ring of atomic tokens (the curve description) and a number of outer rings showing the

identities of the fitted triples.

Z U>
ZN

U P

N
N

P

N

N

N

Z Z

U>

P

P

U

Z
Z

Z

a

b
c

d e

f
g h

i
j

k
l

m

n

o
p

Z

Z

Z

Figure 5.2: Ring diagram showing triples matched to a closed curve

There are sixteen fitted triples in the ring diagram of Figure 5.2, labelled Ô to . . Each

fitted triple identifies an instance of one of the complex tokens. Fitted triple Ô , for example,

identifies an instance of the �¢��m - eR' - Xo�I�AU - m�e¶���)� curve feature. There are places where more

than one triple fits a substring of the description, e.g., the substring � �e!$� , where � andf identify instances of the XKm:�6S¢Y and m=Ufe=�*UjT,X@� eh� curve features. This is to be expected, of

course, since a XKm:�6S¢Y is a kind of m=Ufe=��U5T,X@� eh� (as XKm:�6S¢Y is a subset of m=Ufe=�*UjT,X@� eh�). Similarly, �
and . identify instances of Xo�I�=U - m�e¶���)� and m=Ufe=��U5T,X@� eh� that match the substring � � � � . The

shape includes two other curve features. An instance of Xo�I�=U - m�e¶���)� is identified by . and

there are eleven instances of S=T:U�V - XZY@[, identified by Õ – û and v . A list of the triples fitted

Chapter 5. Complex tokens 105

to the description, ordered according to the curve features each identifies, is provided in

Table 5.3.

Letter(s) Triple fitted Curve feature identified
� ¨ íN(*� � � � (Zí © Xo�o�=U - m�e¶���,�
Ô ¨ � (4�	�'(*� © �*��m - eR' - Xo�I�=U - m�e¶���,�� ¨ íN(4� ��!q� (Zí © XKm:�6S¢Y. ¨ íN(*� � � � (Zí © m=Ufe=��U5T)X@� eh�f ¨ íN(4� ��!q� (Zí © m=Ufe=��U5T)X@� eh�
Õ,(GW ¨ íN(4� (Zí © S=T7U�V - XZY@[g (¢û<(ov ¨ íN(4� (Zí © S=T7U�V - XZY@[
�)(ih ¨ íN(4� � � (Zí © S=T7U�V - XZY@[j ¨ íN(4� �$� (Zí © S=T7U�V - XZY@[P ¨ íN(4� � � � � (Zí © S=T7U�V - XZY@[k ¨ íN(4� �$� � � (Zí © S=T7U�V - XZY@[l ¨ íN(4� � � � � � � (Zí © S=T7U�V - XZY@[

Table 5.3: A list of the fitted triples from the ring diagram of Figure 5.2

Figure 5.3 shows an open curve described at level 3, together with an associated ring

diagram showing the triples that match substrings of the curve description. We can see

that, for open curves (which do not have cyclically permutable descriptions) the rings in

the diagram have a segment ”missing”, allowing the beginning and end of the description

to be identified. There are six fitted triples in the diagram, labelled m to [. A point of max-

imum positive curvature is identified by n . The fitted triple [identifies an instance of the

�*��m - eR' - t7T:�!m curve feature, whose level-3 specification was derived in Section 5.2.2. The re-

maining fitted triples (m , � , � , and z) all identify particular instances of t:T7�!m , whose level-3

specification was given in Section 5.2.3. A list of the six fitted triples, ordered according to

the curve features each identifies, is provided in Table 5.4.

Chapter 5. Complex tokens 106

P+ P+

P0 P0

U>P

P0

P+
P+

P0

P

U>

u
v

w

xy

z

Figure 5.3: Ring diagram showing triples matched to an open curve

Letter(s) Triple fitted Curve feature identified[¨ � a (4� � (4� _ © �¢��m - eR' - t:T7�!mn ¨ �<` (4�<_=(4�ba © Í$`
� ¨ íN(4�3a �	� �<_ (Zí © t:T:��m
z ¨ íN(4� a � � � _ � ` (Zí © t:T:��mm ¨ íN(4� ` � _ � a � � � _ (Zí © t:T:��m
� ¨ íN(4�c` �<_
�3a � � �<_ �<` (Zí © t:T:��m

Table 5.4: A list of the fitted triples from the ring diagram of Figure 5.3

5.4.2 Triple elimination

After the triple matching stage comes triple elimination. The purpose of triple elimination

is to remove (”unfit”) those fitted triples that are considered to be redundant. As an ex-

ample of redundancy, consider again Figure 5.2. Even though eleven separate instances

of S=T:U�V - XZY@[are identified (by Õ – û and v), only two of the instances of the S=T:U�V - XZY@[curve

feature are really of interest: the instance identified by l and the instance identified by

v . The remaining nine fitted triples are redundant, their presence reflecting the fact that

a subsegment of a S=T7U�V - XZY@[is itself a S=T7U�V - XZY@[. Redundancy is also present in the diagram

Chapter 5. Complex tokens 107

of Figure 5.3, in which there is really only a single significant instance of the t7T:��m curve

feature, given by � . The other three instances (� , z , and m) are redundant.

Redundancy is determined on a per-specification basis, i.e., a triple fitted from one

specification in
V

cannot be redundant with respect to a fitted triple belonging to a different

specification. Before we give the conditions that must be satisfied in order for a fitted triple

to be removed, we first define what it means for one fitted triple to be covered by another.

Definition 5.1 A fitted triple, k , is covered by another fitted triple, k*n , iff the substring of the

curve description that the identity of k is fitted to is itself a substring of the substring of the curve

description that the identity of k n is fitted to.

Referring back to Figure 5.2, we can see that, apart from l , every fitted triple in the dia-

gram is covered by another fitted triple.3 A number of the fitted triples are covered by fit-

ted triples from a different specification, e.g., Ô (�*��m - eR' - Xo�o�=U - m�e¶���)�) is covered by � (Xo�o�=U - m�e¶���)�)
and . (m=Ufe=��U5T,X@� eh�). The same applies in the diagram of Figure 5.3, where � is the only non-

covered fitted triple. We are now in a position to define what it means for a fitted triple to

be redundant.

Definition 5.2 Given two fitted triples, k and k¢n , from the same specification, k is redundant iff

(i) k is covered by k n , and (ii) k n is not covered by k .

During triple elimination, all redundant fitted triples are removed (”unfitted”). The

results of triple elimination for the two previous ring diagrams are shown in Figure 5.4.

For the closed curve, token fitting reveals the presence of two S=T7U�V - XZY@[features (l and v),

two m=Ufe=��U5T,X@� eh� s (f and .), a XKm:�6S¢Y (�), a Xo�I�AU - m�e¶���)� (�), and a �*��m - eR' - Xo�o�=U - m�e¶���,� (Ô). For the open

curve, token fitting has resulted in three higher-level curve features being identified: t7T:�!m
(�), �*��m - eR' - t7T:��m ([), and Íq` (n).

As stated previously, token fitting operates on a level- û atomic description. Conse-

quently, the presence of a level- � curve feature (where �»��û) cannot be detected, because
3Given two strings, o and oGp , if o�qroNp then o is a substring of oGp and oNp is a substring of o .

Chapter 5. Complex tokens 108

Z U>
ZN

U P

N
N

P

Z
Z

Z

a e

l
m

n

o
p

P+ P+

P0 P0

U>P

v

w

z

Figure 5.4: Ring diagrams showing the results of triple matching and elimination

the description doesn’t contain enough information. This explains, for example, why we

could not fit Íq` to the description of the closed curve, even though there are two seg-

ments of the curve (given by the � atoms) that may include a point of maximum positive

curvature. Even if we are unable to fit a token to a description, then, we can still ascer-

tain whether the presence of the curve feature it represents is a possibility. In the converse

situation, where we have a complex token specified at level �Èà§û , we need to derive the

equivalent specification at level û before we can fit the token. This explains why S=T:UWV - XZY@[
has not been fitted to the open curve. Note that translating the level-3 description of the

open curve into its level 2 equivalent (using the procedure given in Section 4.2.1), yields a

description that S=T:U�V - XZY@[can be fitted to (� � � �).

5.4.3 Token-string descriptions

We have shown how a ring diagram is used to associate instances of complex tokens with

substrings of an atomic token-string description. The process of token fitting, then, is

essentially one that maps a string of atomic tokens to a ring diagram containing only non-

Chapter 5. Complex tokens 109

redundant fitted triples. A token-string description is a string of labels representing curve

features. The position of a label in the string corresponding to the position of the repre-

sented feature on the curve, i.e., features follow one another along the curve, as encoded

by the order of the labels in the string. A token string must contain only token labels, ad-

ditional symbols, for encoding the relative placement of curve features, are not permitted.

Consequently, it is not always the case that a ring diagram, obtained via token fitting, can

be mapped to a complex-token string. Consider the final ring diagram, given in Figure 5.4,

for the closed curve in Figure 5.2. Since a number of the fitted triples are covered by other

fitted triples, it is not clear what the order of the complex tokens in the string should be.

If we are forced to attempt the mapping, we end up with a string whose label ordering

contradicts the actual positions of the curve features, e.g.:

� S=T7U�V - XZY@[ÿm=Ufe=��U5T,X@� eh�¥XKm:�6S¢Y�S=T7U�V - XZY@[§m=Ufe=��U5T)X@� eh�ÈXo�I�=U - m�e¶���,�ã�*��m - eR' - Xo�o�=U - m�e¶���,�
The same problem exists with the ring diagram for the open curve, in which both n and[are covered by � . The most intuitive token-string choice on this occasion being, perhaps," t:T7�!m Í$` �*��m - eR' - t7T:�!m . It is simply not the case, however, that Íã` occurs after t7T:�!m

(in the sense that t:T7�!m has ended before the occurrence of Í«`), although it is the case that

�*��m - eR' - t7T:�!m occurs after Í°` . Clearly, a string of tokens is an inadequate representation for

either of the two ring diagrams as they stand. The root of the problem lies in our choice

of the complex tokens considered for the token fitting process. In particular, we included

tokens that co-occur, such as m^U e=�*U5T)X@� eh� and Xo�o�=U - m�e¶���,� , i.e., the presence of Xo�o�=U - m�e¶���)� implies

a concomitant presence of m=Ufe=��U5T,X@� eh� , because a Xo�o�=U - m�e¶���,� is a kind of m=Ufe=��U5T,X@� eh� . If we had

omitted m=Ufe=��U5T,X@� eh� and �*��m - eR' - Xo�o�=U - m�e¶���,� (which is already included in a Xo�o�=U - m�e¶���,� segment)

from the token fitting process, then the final ring diagram for the closed curve would not

include f , . , or Ô , with the result that an unambiguous mapping to a complex-token string

is then possible:

� S=T:UWV - XZY@[âXKm��sS¢Y�S=T:UWV - XZY@[Xo�I�AU - m�e¶���)�

Chapter 5. Complex tokens 110

In the next chapter, using the triple relations provided in the following section, we

focus our attention on sets of complex tokens, and the properties required by a set to ensure

that it supports token-string description, i.e., that token fitting using the tokens in the set

always yields a ring diagram that can be mapped, unambiguously, to a string of complex

tokens.

5.5 Triple relationships

In this section, we present a set of thirteen ” ����� - � ” relations that may hold between two

triples. The triples may belong to the same specification or to different specifications and

more than one of the relations may hold between them. A relation holds between two

triples, k°¤ ¨ Ô�(o�d(¢Õ © and kGnN¤ ¨ �^(oz<(4P © , iff there exists a valid alignment of the strings Ô	��Õ
and �ýztP such that a particular positional relationship exists between their identity sub-

strings, � and z . Before listing the relations, we introduce the diagrammatic notation used

to represent triple alignments.

5.5.1 Bar-diagram notation

A valid alignment of two triples, k�¤ ¨ Ôý(o�3(¢Õ © and kZn9¤ ¨ �^(oz<(4P © , corresponds to one par-

ticular way in which the string Ô��PÕ can be written above or below the string �<z P (in the

manner of a matrix consisting of two adjoining rows of cells) such that the following two

conditions are met:

1. Each two-cell column in the matrix either (i) contains one empty and one non-empty

cell, or (ii) contains two non-empty cells containing the same atomic token.

2. The string of atomic tokens obtained by starting at the leftmost column of the matrix

and finishing at the rightmost column (reading the contents of one of the non-empty

cells in each column of the matrix) is syntactically valid.

Chapter 5. Complex tokens 111

As an example, one of the valid alignments of \@� � �] and \@� � � ��� ���] (two triples

taken from the specification of S=T7U�V - XZY@[) is given in Table 5.5. The string of atoms read

from the matrix, � � � � � �$� � � , is derivable from the level-2 atomic TOG and therefore

syntactically valid. There exist four other valid alignments, corresponding to the leftmost

� of the former triple being aligned to one of the four � s of the latter.

� � �
� � � � � � �

Table 5.5: A valid alignment of two S=T:UWV - XZY@[triples

A class of valid alignments is represented by a bar diagram, an example of which is given

in Figure 5.5. A bar diagram contains spring bars, which represent leading and trailing

contexts and are drawn as zigzagged lines, and fixed bars, which represent identities and

are drawn as solid lines of greater thickness. A spring bar represents a string of length zero

or greater (since leading and trailing contexts can be empty). There are two kinds of fixed

bar: if a dot is present in the middle of a fixed bar then it represents a string of length one

or greater, otherwise it represents a string of length two or greater (recall that an identity

must be at least one atom in length). A fixed bar is bounded by vertical lines denoting the

first and last atoms of an identity string. For dotted fixed bars, then, where the identity

string can be a single atom, the vertical lines may denote the same atom. A spring bar

has a fixed end, joined to its neighbouring fixed bar, and a free end, whose actual position

may be anywhere between the position it is drawn in the diagram and the vertical line

bounding the neighbouring fixed bar (the position at which it represents an empty leading

or trailing context). In Figure 5.5, then, a class of valid triple alignments is represented,

whereby the identity of triple k is ”started by” the identity of triple k ’ (which may be one

atom in length) and there are no restrictions placed on the relative starting and finishing

positions of the leading and trailing contexts of k and k n (other than those implied by the

bounding lines of each fixed bar, e.g., the trailing context of k cannot start before the trailing

Chapter 5. Complex tokens 112

context of k n starts, but it may finish before, after, or at the same place the trailing context of

k n finishes). Referring back to the two S=T:U�V - XZY@[triples, the second of the five possible valid

alignments (where the two leftmost � s are aligned) is of the kind represented by the bar

diagram in Figure 5.5.

k
k£n

Figure 5.5: An example bar diagram

5.5.2 The u�vxw - y relations

The thirteen triple relations are listed in Table 5.6. Each relation has a name of the form

” �P��� - � ” and (for brevity) an associated short label of the form �*Uyr , where r is a value

from one to thirteen. The relations are concerned with the valid alignments that exist

between two triples and, within a valid alignment, the positional configurations of the

two identity strings. As an example, consider the first two relations: �P��� - �QY=UW[�Y - ���,�Ie (��Uj­)
and ����� - Y=�QY=UW[�Y - 'GUfeh� (��U ®). Given two triples, k and k n , the relations k��P��� - �QY=UW[�Y - ���)�Ge«k n
and kGnb�P�@� - Y=�PY=UW[�Y - 'IUfeh� k hold iff there exists a valid alignment of k and k¢n which is of the

kind represented by the bar diagram shown alongside the two relations in the table, i.e.,

an alignment whereby the first atom of the identity of k¢n is aligned with the last atom

of the identity of k . Note that both identities must be greater than one atom in length,

because the fixed bars in the diagram are not dotted. From the valid alignment shown

in Table 5.5, for example, we see that \@� ���]ã�P��� - �PY=UW[�Y - ���)�Geÿ\@� �$� � � � �] holds and,

therefore, \@� � � � � ���]P����� - Y=�PY=UW[�Y - 'IUfeh� \@� � �] holds.

A consequence of our atomic sequences being discrete is that we can distinguish be-

tween the ”merging” of identities (��Uj­ and ��U ®) and the ”meeting” of identities (�*UYz and �*U|{).
The difference is illustrated in Figure 5.6. Either or both of two identities that ”meet” are

allowed to be one atom in length (the fixed bars in the diagram for ��U}z and �*U|{ are both

Chapter 5. Complex tokens 113

dotted). The remaining relations (��U}~ to ��Uj­)z) correspond to the other possibilities that exist

for the positional configuration of the identity strings within a valid alignment. Note that

we are not interested here in valid alignments where the identities are not in contact, i.e.,

separated by one or more context atoms.

k
kGn

kÓ�P��� - �QY=Uf[�Y - ���)�GeÀk n
kGn{�P�@� - Y=�PY=UW[�Y - 'IUfeh�Âk

(�*Uj­)
(�*U ®)

k
kGn

kÓ�P��� - �QYKY@�skGn
kGn{�P�@� - t�� - �QY@� - t*�Àk

(�*U}z)
(�*U|{)

k
k n

kÓ�P��� - e^V^Y=Ujl �7m¥k n
kGn{�P�@� - t�Y - e^V=Y=U5l �7m:m�YKu - t*��k

(�*U}~)
(�*U}�)

k
kGn

kÓ�P��� - t�Y - Xo�o�=UW�IYKu - t���kGn
kGn{�P�@� - Xo�o�=UW�ãk

(�*U}�)
(�*U}�)

k
k n

kÓ�P��� - SKeh�,�o�:���Èk n
kGn{�P�@� - t�Y - SKeh�)�I�:���^YKu - t���k

(�*U}�)
(�*Uj­4¬)

k
kGn

kÓ�P��� - t�Y - Y=�)u7YKu - t��ÀkGn
kGn{�P�@� - Y=�^u¡k

(�*Uj­A­)
(�*Uj­4®)

k
k n

kÓ�P��� - Y��{T=�7l	k n
kGn{�P�@� - Y���T^�7l	k (�*Uj­)z)

Table 5.6: The thirteen ����� - � triple relations

Given a pair of triples, a number of valid alignments may exist, or only one may exist,

or, there may be no valid alignments. Consequently, more than one of the relations may

hold between a pair of triples, or none of the relations may hold. Between the two S=T:U�V - XZY@[
triples we considered earlier, for example, all of the relations hold except the ”meeting”

relations (��U}z and ��U|{), the ”overlap” relations (�*U}~ and ��U}�), and �P��� - Y��{T=�7l (��Uj­)z).
The triple relations are loosely analogous to the thirteen interval relations provided

Chapter 5. Complex tokens 114

Figure 5.6: The ”merging” of identities versus ”meeting”

by Allen for the temporal domain (Allen 1984), with identity strings serving the role of

intervals. Since an identity is a string of discrete symbols (as opposed to being continuous)

we are able to single out the ”merging” of two identities as a salient relationship. Also,

because we are interested only in those instances where identities are in contact, we do not

require the notion of one identity occurring ”before” or ”after” another. The final difference

is that Allen’s temporal relations are JEPD, whereas our triple relations are not.

The purpose of the triple relations is to allow us to reason about the possibilities that

exist for the relative placement of fitted triples. As an example, consider the two triples

k�¤ \@� � � ���] and kGn9¤¿� \@� � � � �]^� . The four valid alignments of k and kZn are given

in Table 5.7, along with the triple relations (if any) that hold in each case. Given a level-2

description of a curve, either triple may fit the description at one or a number of places.

In the case of the second valid alignment of the triples, the relation k��P��� - �PY=UW[�Y - ���)�Ge«k n
holds. This tells us that there exist curve descriptions where both k and k n fit, and where

the identity of a fitted instance of k does merge into the identity of a fitted instance of k n . In

particular, such a merging will occur whenever the substring � � � ��� ��� � � � forms part

of a curve description. The �P��� - �PY=UW[�Y - ���)�Ge relation asserts, then, that given the description

of a curve, it may be the case that there are fitted instances of the triples where a merging of

identities occurs. The reason why a merging of identities will not necessarily occur is that

the fitting of k does not imply a concomitant fitting of k¢n , and vice versa. Note, however,

that if the leading context of k n was � � � � , and the trailing context of k was ��� � � � , then

the fitting of one of the triples would necessitate the fitting of the other. The third valid

alignment of k and k n tells us that the relation kR�P��� - e^V^Y=U5l �7m6k n holds. This means that, given

the description of a curve, it may be the case that the identity of a fitted instance of k
overlaps the identity of a fitted instance of k¢n . Given the identities and contexts of k and k¢n ,

Chapter 5. Complex tokens 115

such an overlapping will occur whenever a curve description contains � � � � � � � � as a

substring.

Our discussion of token-string descriptions in Section 5.4.3 highlighted the problems

that can arise when mapping a set of fitted triples to a string of complex tokens. In partic-

ular, the representation of fitted triples with covered or overlapped identities was shown

to be problematic. The way in which an individual token may itself contribute to these

problems can be ascertained by checking the relationships that hold between the triples of

its specification. In the next chapter, we use the triple relations to reason about individual

complex tokens as well as sets of complex tokens.

k � � � � �
kGn � � � � ��� �

k � � � � � kÓ�P�@� - �PY=UW[�Y - ���,�Ie k£n
k n � � � � � � � k n ����� - Y=�PY=UW[�Y - 'IUfeh�Âk

k � � � � � k��P�@� - e^V^Y=Ujl �7m¥kGn
k n � � � � � � � k n �P�@� - t�Y - e^V=Y=U5l �7m:m�YKu - t*�Àk

k � � � � �
kGn � � � � � � �

Table 5.7: The four valid alignments of \@� � � � �] and �q\@� � � � �]^�

5.6 Summary

In this chapter, we have developed a notation for specifying complex tokens that are ca-

pable of representing non-atomic localised curve features. We have given a number of

example specifications and discussed some ways in which complex tokens can be classi-

fied, e.g., by set size, level, etc. We have also shown how subtype relationships between

tokens can be deduced by set-theoretic operations.

The process of token fitting, by which atomic curve descriptions are translated into

Chapter 5. Complex tokens 116

equivalent non-atomic descriptions, consists of two stages, triple matching and triple elim-

ination, and was described in Section 5.4. The triple matching stage fits candidate triples

to an atomic description at those positions compatible with the identities and contexts of

the triples. During the triple elimination stage, triples that have been fitted to the atomic

description by the first stage are considered redundant (and removed), if they are covered

by other fitted triples belonging to the same token specification.

In the next chapter, we focus our attention on sets of complex tokens and give a def-

inition of a local-feature scheme. A local-feature scheme is a set of complex tokens which,

when fitted to an atomic description, necessarily yield a ring diagram that can be simply

mapped to a string of complex tokens.

Chapter 6

Local-feature schemes

In this chapter we consider sets of complex tokens in the context of shape description using token-

strings. We provide the constraints on a set of complex tokens which ensure that token fitting yields

a ring diagram that can be unambiguously mapped to a string of complex tokens. We then define a

local-feature scheme to be a set of complex tokens subject to the constraints.

6.1 Motivation

In our discussion of token fitting in the last chapter (Section 5.4) we considered the map-

ping from a ring diagram, consisting of non-redundant fitted triples, to a string of complex

tokens, and the difficulties associated with such a mapping. In particular, we illustrated

that a mapping may yield an ambiguous or inconsistent token-string description if the

fitted triples cover or overlap one another in certain ways. In order to ensure that the to-

ken fitting process yields a ring diagram that maps to an unambiguous string, we need to

carefully choose the set of complex tokens that we want to fit to atomic descriptions. It

is the choice of complex tokens used for the fitting process that determines whether un-

ambiguous token-string description is possible or not. In this chapter, we formulate the

constraints required for a set of complex tokens to ensure that the fitting process, when

using the tokens, always yields a ring diagram that maps to an unambiguous string.

117

Chapter 6. Local-feature schemes 118

Our first task is to identify the types of positional configurations of non-redundant

fitted triples that are problematic. To do this, we make use of the ring diagram given

in Figure 6.1, which we may refer to as an anonymous diagram since the elements of the

atomic description are unspecified (we just know that the description consists of twelve

atoms). The diagram shows the result of the two-stage token fitting process applied to

an atomic description of length twelve. We can deduce, therefore, that if one fitted triple

is covered by another then the two triples belong to different specifications (unless the

two triples cover each other, as P and l do, in which case we cannot make the deduction).1

For example,
g

cannot belong to the same specification as either k or Ô (otherwise k and

Ô would have been removed during the elimination stage), whereas k and Ô themselves

may or may not belong to the same specification. Similarly, Ô cannot belong to the same

specification as
j

, and k and
j

may or may not belong to the same specification.

a

b

c

d
e

g

h

f

Figure 6.1: Non-redundant triples fitted to an anonymous atomic description

Using the ring diagram of Figure 6.1, we can identify the five distinct kinds of posi-

tional configurations that lead to an ambiguous string of complex tokens, as follows:

1. Overlapping

Let us assume that
g

, k ,
j

, and Ô belong to the complex tokens � , � , � , and � re-
1The reader is referred back to the definitions of covered by and redundant given in Section 5.4.2.

Chapter 6. Local-feature schemes 119

spectively. Fitted triples
g

and
j

have identities that overlap2, but one could argue

that, since the identity of
g

starts before the identity of
j

starts and the identity of
g

finishes before the identity of
j

finishes, then the substring ��� is an unambiguous

and adequate description of the presence and ordering of the feature instances rep-

resented by
g

and
j

, and should therefore form part of the final string. The same

argument applies to two other pairs of fitted triples:
¨ k (j © , and

¨ k (ZÔ © . Consequently,

we are claiming that the string should also contain the substrings ��� and �d� . This

is not possible, however, without duplicating token labels (and thereby introducing

non-existent feature instances), which is clearly unacceptable. One possible candi-

date string for describing the presence and ordering of the four feature instances is�����'� , which we might choose because it correctly reflects the relative starting posi-

tions of the four identity strings. However,
g

and k don’t overlap and neither do
j

and Ô (a fact which is seemingly contradicted by the substrings ��� and �'�).3 Also,

there is no way of telling that
g

overlaps
j

or that k overlaps Ô . Furthermore, there is

nothing in the string which encodes the fact that the four features do actually overlap,

they could, instead, meet, merge, or even be disjoint.

2. Starting and ending

Assume that
g

, Ô , and Õ belong to the complex tokens � , � , and
Î

, respectively. The

identity of Ô “ends” that of
g

, i.e., the two identities finish at the same place in the

atomic description, with the identity of
g

starting before that of Ô . The identity of

Õ fits the two atoms of the atomic description immediately after the identities of
g

and Ô . Therefore, the only real choice for the substring describing the presence and

ordering of the three feature instances is �@� Î . The problem here is that the identities

of
g

and Õ meet, as opposed to being separated by the identity of Ô . This information

is lost in the description and, since � occurs in between � and
Î

, perhaps the most

intuitive interpretation of the description ��� Î is that the curve feature represented
2The word “overlap” here is to be interpreted as “overlap by more than one atom”. We interpret an over-

lapping by one atom as a “merging” (this distinction stems from the triple relations of Section 5.5).
3The identities of � and � are, instead, “contained” by the identities of � and � , respectively.

Chapter 6. Local-feature schemes 120

by � occurs in between the features represented by � and
Î

. This contradicts the

actual relative placement of the three features.

3. Containment

The purpose of a token-string description is to encode the presence and ordering of

curve features, e.g., we would like the string ÝRÞ9� to reflect the fact that the feature

represented by Þ occurs after the feature represented by Ý , and that the feature rep-

resented by � occurs after the feature represented by Þ . When the identity of a fitted

triple contains the identity of some other fitted triple, then we get a similar problem

to the starting and ending case described previously. Consulting the diagram we can

see, for example, that the identity of
g

contains that of k . The substring ��� Î seems

even more unsatisfactory than �@� Î , because the identity of k finishes before that ofg
. Also, in principle, the identity of a fitted triple may contain the identities of any

number of other fitted triples, thereby increasing the amount of ambiguity.

4. Equality

The two fitted triples P and l are equal, in the sense that they have identities that

fit to the same two atoms in the atomic description. Such a configuration is not

amenable to token-string description, because we cannot reasonably claim that one

of the triples occurs before the other. The two possible descriptive sequences, then,

w | and | w , are inadequate representations of the presence and placement of the two

features.

5. Special case of meeting and merging

A consequence of our atomic descriptions being discrete is that there is a special case

of meeting and merging that is problematic, shown by the configuration of identities

in Figure 6.2. The problem is similar to that of the starting and ending and contain-

ment cases. The sequence ÝE�ýÞ , which is the most likely candidate description for

the three feature instances, is ambiguous, as the feature represented by � does not

occur in between the features represented by Ý and Þ . The ring diagram contains

Chapter 6. Local-feature schemes 121

one occurrence of the special case, given by
j

, Õ , and � .

z

x
y

Figure 6.2: The special case of meeting and merging that is problematic

Having identified the kinds of positional configurations that cause ambiguity, an im-

portant question that arises is this: what kinds of positional configurations are we left

with? The answer is that non-redundant fitted triples are permitted to be disjoint (e.g., as

are Ô and P), to merge (e.g., as do
j

and Õ) and to meet (e.g., as do
g

and Õ), with the proviso

that the positional configuration given by Figure 6.2 (hereafter referred to as pc5) does not

occur. Our findings can be summarised in the following statement:

A mapping from a ring diagram to an unambiguous string of complex tokens is possible

if (i) non-redundant fitted triples may only merge, meet, or be disjoint, and (ii) there

are no instances of pc5 in the diagram.

Our objective now, then, is to formulate the constraints which ensure that, for a given

set of complex tokens,
V

, token fitting using
V

always results in a ring diagram that satisfies

the two conditions given in the statement.

6.2 Token constraints

We will begin by considering two kinds of constraints. Firstly, the constraints which apply

to each individual complex token in a set, and, secondly, the constraints which apply to

token pairs. In our definition of a local-feature scheme (given in Section 6.3) we will incorpo-

rate these two kinds of constraints, as well as a final constraint which denies the possibility

of pc5.

Chapter 6. Local-feature schemes 122

6.2.1 Individual tokens

Consider a complex token, M , which has been fitted to an atomic description, resulting

in ring diagram ò . The triple elimination stage of the token fitting process ensures that

only fitted triples that merge, meet, overlap, are equal, or are disjoint, remain in ò . Fitted

triples that start or end another fitted triple, or are contained by a fitted triple, are deemed

redundant and therefore removed by the token fitting process. This means that we only

need to concern ourselves with fitted triples from M that overlap or equal one another. We

can eliminate the possibility of equality by enforcing the following condition:

%fü<k*(ok n psM�+@%^k��P�@� - Y���T^�7lKk n þ kR¤âk n +

This leaves us with the case of fitted triples that overlap, a possibility which we could

eliminate by making use of the condition %füýk�(okZnNp¡M�+@%���kQ�P��� - e^V^Y=Ujl �7m!kGn4+ . The difference

between overlapping and equality, however, is that, whereas fitted triples that are equal

are not removed during the triple elimination stage, fitted triples that overlap are, in certain

circumstances, removed. In other words, overlapping of fitted triples after the triple match-

ing stage of token fitting is acceptable, as long as no overlapping remains at the end of the

token fitting process. Therefore, the aforementioned condition is stronger than it needs to

be. Furthermore, if it were used, then certain tokens, such as S=T:UWV - XZY@[for example4, could

not be used in token-string descriptions.

Two fitted triples, � and z , that overlap after the triple matching stage, are removed

during the triple elimination stage iff they are both covered by another fitted triple. It

turns out that, if there does not exist a fitted triple that covers both � and z , then the fitted

triples that together cover � and z must themselves overlap. With this in mind, the con-

straint that we need to enforce can be worded as follows: whenever two fitted triples from

M overlap, they must both be covered by a third fitted triple, also from M . As an example,

consider S=T:U�V - XZY@[and two of its triples, k�¤ \@� �$� � � � �] and kZnE¤ \@� � � ��� ��� ���] .
We have k'�P��� - e^V^Y=U5l �7mEkIn , as illustrated by the two valid alignments of k and k¢n shown in Ta-

4Refer back to Section 5.2.3 for the specification of �2����� - �H��� .

Chapter 6. Local-feature schemes 123

k � � � � � � � kÓ�P��� - e^V^Y=Ujl �7m¥kGn
k n � � � � � � � � � k n �P�@� - t�Y - e^V=Y=U5l �7m:m�YKu - t*��k

k � � � � � � � kÓ�P��� - e^V^Y=Ujl �7m�k n
k£n � � � � � � � � � kGn~�P��� - t�Y - e^V^Y=Ujl �7m:m�YKu - t*��k

Table 6.1: Two of the valid alignments of \@� ��� ��� ���] and \@� �$� � � � � � �]

ble 6.1, i.e., there are two ways in which k may overlap k n . We need to take account of both

ways. The first alignment tells us that, given an atomic description, ñ , k and k n will overlap

as fitted triples if ñ contains one or more instances of the substring � � � �$� � � � � � �
(as explained in Section 5.5). Our constraint requires that a third triple exists in S=T7U�V - XZY@[
which covers both k and kon . The desired triple can be constructed by “merging together”

the rows of the alignment matrix (e.g., by moving the first row down over the second) in

a manner where the identity cells “dominate” the context cells. The nature of the merg-

ing process, and dominance, is make clear in an algorithm presented shortly. In the case

of the first alignment of k and k n , the constructed triple, � , is \@� � � � � �$� � � � �] . The

second alignment tells us that k and k n will overlap as fitted triples if ñ contains one or

more instances of the substring � � � � � � � �$� � � � � . In this case, the constructed triple,

��n , is \@� �$� � � � � � � � � �$�] . The two valid alignments of k and kon that are related to

k��P��� - e^V^Y=Ujl �7m k£n may be thought of as being subsumed by � and �4n , respectively. The two

constructed triples are both in the specification of S=T:U�V - XZY@[, and so the constraint clearly

holds for k������ - e^V=Y=U5l �7m6kIn .
We are now in a position to formally specify the overlapping constraint. Let XKT:t)XKT:�PYKu

be a binary predicate taking a set of valid alignments, � , as its first argument and a token

specification, M , as its second, such that XKT:t,XKT7�QYKu holds iff every alignment in � yields a

constructed triple that exists in M . The overlapping constraint can be enforced on a token

as a whole, then, using the following condition, where �^� l)� �yÔ�. - Ô��}W k v f�l v>koø is a function

returning the set of valid alignments associated with the relationship k������ - e^V=Y=U5l �7m6k�n :

Chapter 6. Local-feature schemes 124

%fü<k*(ok n psM�+@%^k��P�@� - e^V=Y=U5l �7m6k n þ XKT:t)XKT:�QYKu<%&�^� l�� �&Ô�. - Ô��YW k v f�l v>koø7%yk�(ok n +*(IM�+~+
This condition ensures that, at the end of a token fitting process involving the fitting of

M , no two non-redundant fitted triples from M overlap.

The XKT7t,XKT7�QYKu predicate

An implementation of the XKT:t,XKT7�QYKu predicate is provided by Algorithm 6.1. The algorithm

makes use of the following supporting functions and predicates: n�WiP�k j %&ê1+ returns the

width of alignment matrix ê ; l ��k � Ô7��kK%&ê!(� (Z�4+ returns the contents of cell % row � (column �4+
of matrix ê ; the three predicates � u - �)�Geh� %&ê!(� (Z�4+ , l SKeh� - �,�Ieh��%&ê�(� (Z�K+ , and �GSKeh� - �)�Geh� %&ê!(� (Z�4+
hold if the atom in cell % row � (column �K+ is, respectively, an identity atom, a leading context

atom, or a trailing context atom; the addition symbol (+) is used to denote string concate-

nation and �7T:l�l represents the empty string.

The algorithm contains an outer for loop in which each valid alignment is considered

in turn (step
>
). For each alignment matrix, a triple is constructed from the matrix by sim-

ulating a merging of the two rows in the matrix (step ´ � ¸). This triple, specified by the

strings � , ï , and M , needs to be in Ð in order for XKT7t,XKT:�PYKu to hold, and so, if it is not, the al-

gorithm returns '5�7l XZY (step ´ � ½). If all of the constructed triples are in Ð , then the algorithm

returns �*U5T^Y (step �). To illustrate the merging operation carried out by the algorithm, con-

sider the valid alignment of �>_ \@�c` �ý_R�3a �ý_R�c`]:�ý_ and �c` �<_�\@�3a �ý_'�c` �ý_'�3a]^�da shown

in Table 6.2.

´ ¸ ½ � ² · � � �
´ �ý_ �c` �<_ �3a �<_ �c` �<_
¸ �c` �<_ �3a �<_ �<` �<_ �3a �da

Table 6.2: An alignment of �>_ \@�c` �ý_R�3a �ý_R�c`]:�ý_ and �c` �<_�\@�3a �ý_'�c` �ý_'�3a]^�da

Chapter 6. Local-feature schemes 125

Inputs: � (set of valid alignment matrices), Ð (token specification)
Output: �*UjT)Y or '5�:l XZY
>

for each ê pC� do
´ � ´ �8@ ï�@ÂM @¼�7T:l�l�A
´ � ¸ for W�@Ë´ to n�WiP�k j %&ê1+ do
´ � ¸ � ´ if � u - �)�Ieh��%&ê�(4´=(GWG+ then
´ � ¸ � ´ � ´ ï�@ ï Å l ��k � Ô¶��k@%&ê�(4´=(GWG+2A next for A
´ � ¸ � ¸ if � u - �)�Ieh��%&ê�(¢¸¶(GWG+ then
´ � ¸ � ¸ � ´ ï�@ ï Å l ��k � Ô¶��k@%&ê�(¢¸¶(GWG+2A next for A
´ � ¸ � ½ if l SKeh� - �)�Ieh��%&ê�(4´=(GWG+ then
´ � ¸ � ½ � ´ �8@ � Å l �ýk � Ô¶��k@%&ê�(4´=(GWG+2A next for A
´ � ¸ � � if l SKeh� - �)�Ieh��%&ê�(¢¸¶(GWG+ then
´ � ¸ � � � ´ �8@ � Å l �ýk � Ô¶��k@%&ê�(¢¸¶(GWG+2A next for A
´ � ¸ � ² if �GSKeh� - �,�Ieh��%&ê�(4´=(GWG+ then
´ � ¸ � ² � ´ M @ M Å l ��k � Ô7��kK%&ê!(4´=(GWI+2A next for A
´ � ¸ � · if �GSKeh� - �,�Ieh��%&ê�(¢¸¶(GWG+ then
´ � ¸ � · � ´ M @ M Å l ��k � Ô7��kK%&ê!(¢¸¶(GWI+2A next for A
´ � ½ if

¨ �.(Zï{(IM © *psÐ then return '5�7l XZYRA� return ��U5T)Y¡A
Algorithm 6.1: The XKT:t)XKT:�PYKu predicate

We begin our analysis at step ´ � ´ of the algorithm, with ê as the valid alignment matrix

of Table 6.2. Step ´ � ´ initialises the identity and leading and trailing context strings of the

to-be-constructed triple. In step ´ � ¸ , the variable W is set to loop from 1 to the width of

ê , which is 9, i.e., the algorithm traverses the matrix from the leftmost column to the

rightmost column. For each column, a check is made on the content-type of each of the

two cells in the column, resulting in a single atom being added to either � , ï , or M . Identity

atoms dominate context atoms, since, if either cell of a column contains an identity atom,

then that atom is added to ï and nothing is added to � or M (steps ´ � ¸ � ´ and ´ � ¸ � ¸). This is

the case for columns 2 to 8 in our example. If step ´ � ¸ � ½ is reached, i.e., a column does not

Chapter 6. Local-feature schemes 126

contain any identity atoms, then either: one of the cells is empty, or both cells contain an

atom of the same type.5 Leading-context atoms are identified by steps ´ � ¸ � ½ and ´ � ¸ � � and

added to � , trailing-context atoms are identified by steps ´ � ¸ � ² and ´ � ¸ � · and added to M .

When step ´ � ½ is reached, the triple constructed from the alignment matrix,
¨ �.(Zï{(IM © , takes

the form depicted in Table 6.3.

� _ � ` � _ � a � _ � ` � _ � a � a

Table 6.3: The triple constructed from the alignment matrix given in Table 6.2

MAMO categorisation

We are now in a position to bring together the constraints on an individual complex token

which ensure that, when the token is fitted to an atomic description, the ring diagram

that results only contains non-redundant fitted triples that merge, meet, or are disjoint, as

specified by the statement given earlier (p. 121). A complex token, M , is a MAMO (“merge

and meet only”) token6 iff :

� %fü<k*(okGn>p«M�+@%^k������ - Y���T^�7l@kGn�þ kR¤âkGn4+ ,

� %fü<k*(okGn>p«M�+@%^k������ - e^V=Y=U5l �7m6kGn�þ XKT:t)XKT:�PYKuý%&�^� l)� �&Ô�. - Ô��YW k v f�l v>koø7%yk�(okGnW+*(IM1+~+ , and

� %fü<k*(ok n (ok n n p«M�+@%^k������ - �PYKY@�3k n þ �6%ykR����� - �PY=UW[�Y - ���,�IeNk n n � k n n ����� - �QY=UW[�Y - ���,�IeQk n +~+ .

The third condition is included so that pc5 cannot occur with triples from the same

token specification. By including the third condition in the MAMO definition, in addition

to its inclusion in the definition of a local-feature scheme (as we will see later), we can

assert that all MAMO tokens are candidates for inclusion in a local-feature scheme.
5Assuming a valid alignment in which the identities are not disjoint, i.e., overlap, merge, or meet.
6The name reflects the fact that, after fitting the token to an atomic description, the only relations that can

exist between the fitted triples are of the merging and meeting kind (disjointness is not defined as a relation).

Chapter 6. Local-feature schemes 127

An example: determining whether or not S=T7U�V - XZY@[is a MAMO token

As an example, consider the S=T:U�V - XZY@[complex token and whether or not it is MAMO. Recall

that the specification of S=T:U�V - XZY@[is ��\�%I� Å � +@%5� � Å � � + K] � . Let U denote the language of

strings given by the regular expression. The first MAMO condition is clearly satisfied.

The third condition is also satisfied, because pc5 requires the existence of a triple with an

identity of length two. No such triples exist in S=T:U�V - XZY@[, which contains only triples with

odd-length identities. To show that the second condition is satisfied, we make use of the

following properties that characterise the identity string of each triple in S=T7U�V - XZY@[:

� the atoms � or � appear at all odd-numbered positions in the string, and

� the atom � appears at all even-numbered positions in the string.

We need to prove that all triple pairs,
¨ k*(ok n © , of S=T:UWV - XZY@[, that may overlap, are necessar-

ily subsumed, i.e., that fitted instances of k and k n that do overlap are necessarily removed

by triple elimination. In other words, we have to show that a triple covering k and k n must

exist in S=T7U�V - XZY@[. The covering triple (denoted by k¢n n) must be of the form
¨ íN(Zï�(Zí © , because

k and kGn have leading and trailing contexts that are empty. The identity of k�n n must be a

string that exists in U , because ï is the string obtained by concatenating the identity string

of k with that portion of the identity string of k¢n that isn’t overlapped by the identity string

of k . Such a concatenation yields a string of atoms that has the two properties listed above.

Having these properties is a necessary and sufficient condition for a string to belong to U .

The triple k n n must always exist in S=T:U�V - XZY@[, so the second MAMO condition is also satisfied.

We can conclude, therefore, that S=T7U�V - XZY@[is a MAMO token.

6.2.2 Pairs of tokens

The triple elimination stage of token fitting removes fitted triples from a ring diagram

on a per-token basis, leaving non-redundant fitted triples. The removal of a fitted triple

depends only on other fitted triples from the same specification. Therefore, the MAMO

Chapter 6. Local-feature schemes 128

constraints for individual tokens do not prevent fitted triples from different specifications

from overlapping, starting or ending, or being equal to another fitted triple. In order to en-

sure that the non-redundant triples that remain after triple elimination only merge, meet,

or are disjoint, we also need to constrain the relations that may hold between triples of

token pairs. Specifically, we need to make sure that the only relations that hold between

triples from different specifications are the merging and meeting relations (�*U£­ to ��U|{). To

do this we define a “non-interference” relation, ¢ , such that, if M ¢¡M!n holds, then fitted

triples of M may only merge, meet, or be disjoint from fitted triples of M n :

M£¢ÈM n¥¤ %füýk9p«MN(ok n p«M n +@%���k �e¦=§ � -
¦ |Q¨6k n +

k ��¦=§ � -
¦ |Q¨.kGn ¤ k��P�@� - e^V^Y=Ujl �7m6kGn©
�kR�P��� - t�Y - e^V^Y=U5l �7m:m�YKu - t��NkGn]

k��P�@� - t�Y - Xo�o�=UW�IYKu - t��NkGn©
�kR�P�@� - Xo�o�=UW�bkGn�

k��P�@� - SKeh�,�o�:���6kGn©
�kR�P�@� - t�Y - SKeh�)�I�:���^YKu - t��NkGn�

k��P�@� - t�Y - Y=�^u:YKu - t��NkGnª
 k������ - Y=�)u�kGn�

k��P�@� - Y��{T=�7lKk n

In the condition that is used to define the non-interference relation, triple relations

��U}~ to ��Uj­)z need to be explicitly disallowed (using
��¦�§ � -

¦ |Q¨), because more than one of

the thirteen relations may hold between a given pair of triples (although only one of the

relations can hold for each valid alignment).7 The ¢ relation is irreflexive, symmetric, and

non-transitive.

6.3 Definition of a local-feature scheme

We have formulated constraints for individual complex tokens and pairs of complex to-

kens, to ensure that token fitting yields fitted triples that only merge, meet, or are disjoint.

Using these constraints, we are now in a position to constrain sets of complex tokens. A

local-feature scheme (LFS) is a finite set of complex tokens,
�

, such that:

� every complex token in
�

is specified at the same atomic level,
7I.e., “ «#¬®­-¯®°²± - ¯®³µ´-¬ ” cannot be replaced with “ ¬�¶��|·¸¬ p�¹ ¬�¶��6º»¬ p�¹ ¬�¶��6¼»¬ p�¹ ¬�¶��6½�¬ p ”, because the set of

triple relations is not JEPD.

Chapter 6. Local-feature schemes 129

� each complex token in
�

is MAMO,

� %füýMN(IMNn>p � +@%)M¾*¤ MNn�þ M£¢¥MQnK+ , and

� %fü<k*(okGn (okGn n>pr¿ � +@%^k	�P��� - �QYKY@�dk£n þ �.%ykR�P��� - �QY=UW[�Y - ���)�GeQkGn n�� kGn n{�P��� - �QY=Uf[�Y - ���)�GeQkGn�+~+ .

The final condition of the definition rules out any “global” occurrences of pc5, i.e.,

occurrences where the three fitted triples do not all belong to the same token specification.

Note that this condition subsumes the analogous pc5-related MAMO condition, as k , k@n ,
and kGn n may all belong to the same token in

�
. The reason for this apparent redundancy

is that, by incorporating the pc5-related condition in the definition of a MAMO token, we

can make the assertion that every MAMO token is a candidate for inclusion in an LFS.

An LFS, then, provides a set of shape descriptors for representing shapes, such that

each description is an unambiguous string of complex tokens encoding the presence and

ordering of curve features on the bounding curve of a shape.

6.4 An example: representing polygonal shapes

As an example of LFS specification, and the choosing of a set of complex tokens for de-

scribing shapes of a particular kind, consider the representation of polygonal figures using

the complex tokens specified in Table 6.4.

Token specification Description
�Aº ¤ �
� \@� �]^� � Outward-pointing vertex
�=F ¤ �
� \@� "]^� � Inward-pointing vertex

� ¤ �ã\Z�] � Straight edge
� ¤ �ã\Z� � � �] � Outward-pointing “V-segment”
à ¤ �ã\Z� � " �] � Inward-pointing “V-segment”

Table 6.4: Complex tokens for representing polygonal shapes

All five of the complex tokens are MAMO and each one is therefore a candidate for

Chapter 6. Local-feature schemes 130

inclusion in an LFS. Note that the complete set of five tokens does not define an LFS, because

of the following token interference:

� \@� �]^� �P�@� - t�Y - SKeh�)�I�:���)YKu - t�� \Z� � � �] þ �6%y�AºÀ¢ �Q+
� \@�	"P]^� �P�@� - t�Y - SKeh�)�I�:���)YKu - t�� \Z� �	"8�] þ �6%y� F ¢ àQ+
\Z�]��P��� - Xo�I�AUW��\Z� �	���]¥� \Z�]1����� - Y=�^u¡\Z� �	�8�] þ �6%5��¢ �Q+
\Z�]��P��� - Xo�I�AUW��\Z� � " �]¥� \Z�]1����� - Y=�^u¡\Z� � " �] þ �6%5��¢ àQ+

Let’s assume that we would like to specify an LFS capable of distinguishing between

polygonal shapes that differ as to the number, and configuration, of inward- and outward-

pointing vertices. Therefore, of the ¸ÂÁ»¤ ½A¸ subsets of the five tokens, only four of the

subsets are of interest to us: �4�7º^(o�^F � , �4�Aº)(o�^FI(*� � , �:�1(4à � , and �:�1(4à8(*� � . The first three sub-

sets each define an LFS, but the fourth subset doesn’t. The reason why the fourth subset

doesn’t is that the non-interference condition doesn’t hold between � and either of � and

à , since the triple of � may both start and end the triples of � and à . We can choose any

of the following LFSs, then, as our representation for polygonal shapes: /�01��2	��¤§�4�Aº^(o�=F � ,
/�08�	2<;�¤¼�4�Aº^(o�^FI(*� � , or /�01��2<?¥¤¼�:�8(4à � . Shown in Figure 6.3 is a simple four-sided

polygon, with the level-2 atomic description � � � � � � � � � � � " , together with ring dia-

grams showing how the five complex tokens are fitted to its description. From the three

diagrams in the figure, we can see that the shape is described as �hº<�Aº��Aº<�=F under /�01�	2d� ,
�d� º �d� º �d� º �d� F under /�01�	2 ; , and ������à under /�08�	2 ? .

U<
Z

U>
Z U>

Z

Z
U>

vo

vo
vo

vi U<
Z

U>
Z U>

Z

Z
U>

vo

vo
vo

vi U<
Z

U>
Z U>

Z

Z
U>

/

/

/

/

>

>

>

<

Figure 6.3: Fitting complex tokens to a polygonal shape

Chapter 6. Local-feature schemes 131

6.5 Summary

This chapter has been concerned with the mapping from a ring diagram to an unambigu-

ous string of complex tokens. We started by showing that, without constraining the set

of tokens used in the token fitting process, it may not be possible to adequately represent

the resultant set of non-redundant fitted triples using a token-string description. We then

formulated constraints for individual tokens and pairs of tokens. Using these constraints,

we defined a local-feature scheme (LFS) as a set of complex tokens that can be used to

represent shapes using unambiguous token-string descriptions, i.e., tokens which, when

fitted to an atomic description, necessarily yield non-redundant fitted triples that may only

merge, meet, or be disjoint.

Later on, in Chapter 8, we show how each of the boundary-based schemes we looked

at in Chapter 2 can be defined as an LFS. In the next chapter, we focus our attention on the

problem of constructing a token-ordering graph for an LFS.

Chapter 7

Token-ordering graphs

A token-ordering graph visually encodes the syntactic constraints for a set of tokens. It consists of

nodes associated with tokens and directed edges representing ordering constraints between tokens.

In this chapter, we address the problem of constructing a token-ordering graph from a set of complex

tokens defining a local-feature scheme.

7.1 Preliminaries

The purpose of a token-ordering graph (TOG) is to provide a visual encoding of the ba-

sic string syntax specific to a particular set of tokens. In Chapter 4, we considered atomic

TOGs, i.e., graphs associated with sets of atomic tokens taken from the unbounded atomic

hierarchy. As mentioned previously, an algorithm for constructing an atomic TOG for

a given level of the atomic hierarchy, from a pair of I-I and I-P-I tables, is given in Ap-

pendix B. In the present chapter, we are concerned with the construction of TOGs that

encode string syntax for sets of complex tokens. Specifically, as a result of our analysis

of unambiguous token-string description in the previous chapter, we are interested only

in those sets of complex tokens that define local-feature schemes (LFSs). Regardless of

whether the syntax encoded by a TOG is for a set of atomic tokens or complex tokens,

the meaning of a TOG, and its constituent elements, is the same in each case, i.e., nodes

132

Chapter 7. Token-ordering graphs 133

are associated with tokens and edges represent the ordering constraints between tokens.

The two kinds do differ, however, with respect to their construction. An atomic TOG is

constructed for a set of atomic tokens from a pair of transition tables, whose contents are

derived from the sequences of qualitative components identified with the atoms them-

selves (Algorithm 4.1, p. 84). In the case of a set of atomic tokens, the associated TOG

may be interpreted as a state-transition graph, since each atom represents an interval or

point interpretation of a curve state. The construction of a non-atomic TOG is significantly

different, stemming from the fact that complex tokens are sets of string-triples, rather than

interpreted curve states.

7.1.1 LFS restriction

In order to simplify the construction of a TOG from an LFS, we will restrict ourselves to

LFSs whose tokens do not contain any triples with leading or trailing contexts of length

greater than one. The principal reason for this restriction is to rule out the possibility of

certain token-occurrence dependencies which are not easily represented by a TOG. As an

example, consider an LFS that includes the token specifications �¡¤ �b�Ó¤ �q\@�]^� � � and
Î ¤¿�bz¥¤ � \Z�Q]:� � . We have ���P��� - t�� - �QY@� - t���z , and, since � has a trailing context that

extends to the end of z ’s trailing context, when � fits to an atomic description, z necessarily

also fits, i.e., each occurrence of “ � ” in a token-string description must be followed by a

“
Î

”. Such a dependency requires graph nodes associated with strings of token labels, or

some other extension to the TOG formalism. More elaborate dependencies are possible

with contexts of even greater length. Our restriction to contexts of length one eliminates

the possibility of such problematic dependencies. The restriction is considered acceptable

because it doesn’t rule out any of the LFSs considered in this thesis, each of which contains

only tokens with triple-contexts of length at most one atom.

Chapter 7. Token-ordering graphs 134

7.1.2 Use of ÃÅÄÇÆ �
In the discussion of TOG construction that follows, we use �	��
�� as an illustrative example.

Its specification is given in Table 7.1 and includes the tokens of /�08�	2d; (from Section 6.4),

together with the specification for S=T:U�V - XZY@[(aliased as “ x ” here).

����
d�»¤é� �Aº ¤ �
� \@� �]^� � (
�=F ¤ �
� \@� "]^� � (
� ¤ �ã\Z�] � (
x ¤ �ã\K%I� Å � +@%5� � Å � � + K] �Â�

Table 7.1: The specification of �	��
R�

7.1.3 Ring-diagram sets and non-atomic TOGs

In Chapter 5, we showed how the process of token fitting yields a ring diagram from an

atomic description and a set of complex tokens. A ring diagram contains an inner ring (the

atomic description) and one or more outer rings which show how the complex tokens fit

the description. The ring diagram in Figure 7.1, for example, shows the result of fitting

the tokens of �	��
'� to the description � � � � � � � � � � � � � � � " � . In this case, there are

eight equivalent and unambiguous complex-token descriptions that the diagram maps to.

Starting at the rightmost � of the inner ring (and going clockwise), we get the description

� x � x �d�=F7�d�=ºb� . The seven other (equivalent) descriptions are obtained by starting at

different positions on the inner ring.

Consider an LFS,
V

, where each token is specified using atoms at level û in the atomic

hierarchy. The token fitting process can be used to fit the tokens of
V

to a valid string,

ø , of the form " Ð or � Ð , where Ð is a syntactically valid string of atomic tokens (i.e.,

derivable from the level- û atomic TOG) and ø is subject to the conditions for validity given

in Section 4.3.4. The fitting of
V

to ø yields a single ring diagram, òq% V (¢ø^+ , which maps

to a set of complex-token descriptions, ñ�%&òq% V (¢ø=+o+ . For example, if
V ¤ �	��
�� and ø�¤

Chapter 7. Token-ordering graphs 135

Z U>
Z

P

N

U<
Z

U>

U>

Z
P

U>

U>

Z

N

P

Z U<
Z

U>

P

Z

Z

vi

vo

Z

/

/

/

/

C

C

Figure 7.1: Fitting the tokens of ����
 � to �¦���!� � � � ����� � ����� �	"!�

��� � � � � � � � � � � � � � " � , then we have:

ñ�%=òq%7�4�=º^(o�=FG(*�7(xd� (>ø
+~+Ó¤é� � �Aº>� x � x �d�=F¶�7(�§� x � x �d�=F¶�d�Aº^(� x � x �d�=F¶�d�Aºb�7(
�§� x �d�=F7�d�=ºb� x (� x �d�=F��d�Aºb� x �7(Á�§�d�=F:�d�Aº3� x � x (
� �=F��d�=ºb� x � x �7(¿�§�d�Aºb� x � x �d�=F �

Let
�

denote the set of all valid strings of the form " Ð or � Ð that are derivable from

the level- û atomic TOG. From each ø�p � , then, we get a ring diagram òq% V (¢ø^+ by fitting

the tokens of
V

to ø , from which, in turn, we get a set of complex-token descriptions,

ñ�%&òq% V (¢ø=+o+ . A set of atomic descriptions,
�

, then, when considered with respect to a set

of complex tokens,
V

, leads to a set of ring diagrams, È , which, in turn, leads to a set of

complex-token descriptions, É :

�ËÊ Èç¤§�3òq% V (¢ø^+�è6ø!p � + � Ê É ¤ÍÌ �3ñ�%&òq% V (¢ø^+o+�è6ø!p � � (7.1)

The complex-token strings in É are exactly those that should be derivable from the

non-atomic TOG constructed for the LFS
V

, with respect to the set of atomic descriptions

contained in
�

. In the sections that follow, we describe one method by which non-atomic

TOGs, with different “scopes”, can be constructed for a restricted LFS.

Chapter 7. Token-ordering graphs 136

7.2 Scope graphs

The construction of a TOG for an LFS is carried out with respect to a set of atomic descrip-

tions, because the form of a constructed non-atomic TOG (i.e., the nodes and connections

it contains) depends on the set of complex-token strings that should be derivable from it

(given by É in equation 7.1). As equation 7.1 indicates, the content of É depends, ulti-

mately, on the atomic descriptions contained in
�

. Up until now, we have assumed that
�

is obtained from the level- û atomic TOG (where û is the atomic level at which the tokens

of an LFS are specified). In actual fact,
�

can be any set of atomic descriptions. The pur-

pose of
�

is to specify a scope (range) of curves that an LFS is capable of representing. A

scope graph is an atomic TOG that is a “subset” of a level- û atomic TOG, in the sense that

the set of atomic descriptions obtainable from it is a subset of the full set of level- û atomic

descriptions.

A scope graph is used to define the scope of curves considered in the construction of a

TOG for an LFS. We write TOG %&�N(*#8+ to refer to the TOG constructed for � with respect to

the scope of curves given by graph # . In our construction of a TOG for �	��
�� , we will use

the graph given in Figure 7.2 (#$�), which restricts the scope to curves that do not contain

any cusps, or any points where the tangent bearing is defined but the curvature is not.

U<

Z

U>

Z

P N

Figure 7.2: An example scope graph, #$� , for ����

�

Chapter 7. Token-ordering graphs 137

7.3 Stages of TOG construction

A non-atomic TOG is constructed for an LFS, using a scope graph, # , in three stages. In

the first stage, the LFS is “prepared” so that each of its tokens contains only triples that

are compatible with # . An algorithm is provided for converting each triple of each token

specification into explicit-context form, and for filtering out triples that do not fit any of the

atomic descriptions derivable from # . Empty tokens (those whose triples have all been

filtered out) are removed from the LFS. In the second stage, graph nodes are created for

each token of the prepared LFS. A given token may require the creation of more than

one graph node, depending on the triples contained in its specification. Each node of a

non-atomic TOG is associated with a (possibly infinite) set of triples. In the final stage of

construction, the nodes of the graph are connected together, according to the sets of triples

associated with each node.

7.3.1 LFS preparation

To simplify TOG construction, we convert triples that contain either one or two empty

strings into equivalent triples that are in explicit-context form. A triple is in explicit-context

form iff each of its three component strings (leading context, identity, and trailing context)

is non-empty. As an example, consider the token �q¤¦��\Z�] � from ����
 � , which has lead-

ing and trailing contexts that are implicit. As stated earlier, in Section 5.2.1, having the

empty string as a context is equivalent to specifying all possible contexts of length greater

than or equal to one. For � , then, we have ��\Z�] � ¤ �b��\Z�]4z èEu:Y=U5� V=�7t7l Y�%y��� z<(*#q��+ � , where

u:Y=U5� V=�7t7l Y�%5

(*#8+ is a predicate that holds iff the atomic string
ç¤Âøh�¢ø,; ����� ø , is derivable

from graph # , i.e., iff the path ø7� É ø); É ����� É ø , exists in # . Importantly, because of

the redundancy constraint in the definition of a complex token (see Section 5.2), we only

need to consider those strings of the form ��� z where � and z are a single atom in length.

In order to accomodate curve end-points (denoted by “ L ”), we assume the temporary ex-

istance of two extra nodes in # (labelled “ L ”), one of which is reachable from all interval

Chapter 7. Token-ordering graphs 138

nodes and has no outgoing connections, the other having no incoming connections and

connected to all interval nodes.1 A conversion of � into explicit-context form, then, with

respect to # � , yields the following triples:

� \Z�]:� � \Z�]:� � � \Z�]:� � " \Z�]:� LP\Z�]:�
� \Z�]:� � \Z�]:� � � \Z�]:� � " \Z�]:� LP\Z�]:�
� \Z�]:� � � \Z�]:� � � � \Z�]:� � � " \Z�]:� � LP\Z�]:� �
� \Z�]:� " � \Z�]:� " � � \Z�]:� " � " \Z�]:� " LP\Z�]:� "
� \Z�]�L � \Z�]�L ���°\Z�]�L �	"$\Z�]�L LP\Z�]�L

As well as the conversion of triples with implicit context into explicit-context form,

the preparation of an LFS includes the removal of triples that are not compatible with the

scope graph under consideration. A triple � \Iï�]4z is incompatible iff the string �Pï	z is not

derivable from the scope graph. In the case of �	��
 � and scope graph # � , there are no

triples in the specifications of the tokens in �	��
	� that are incompatible with # � . This is

principally because we have chosen #$� so that it defines a scope of curves that is well-

suited to ����

� . If we remove the � � node from #�� (and its associated connections), for

example, then the triple of �:º would become incompatible with #q� and therefore removed,

resulting in the removal of �7º itself from �	��
'� (since it would contain no triples). A greater

effect, in terms of triple removal, is caused by the removal of the node for � : if � is removed

(while retaining all the other nodes in # � , including ���), the infinite specification for x
reduces to the 50-element set �4��\@�]4z<(~��\@�]4z�èE�3(oz«p��^� (*�'(4�E�R(4��"R(NL �A� .

A procedural account of the preparation process is provided by Algorithm 7.1, which

converts and removes triples from a set of tokens,
V

, with respect to a scope graph, # . The

algorithm operates as follows. For each M§p V , a temporary result set, ê , is initialised, and

then each triple contained in the specification of M is considered in turn (step ´ � ¸). Triples

that are incompatible with # are simply ignored (step ´ � ¸ � ´) and thus filtered out of the

specification (an action that is effected by step ´ � ½ or ´ � �). A triple that is derivable from #
1Recall that the description of an open curve must start and finish with interval atoms.

Chapter 7. Token-ordering graphs 139

is either (i) converted to explicit-context form if it has empty strings for one or both of its

contexts, with the resulting triple(s) copied to ê (steps ´ � ¸ � ´ � ¸ to ´ � ¸ � ´ � �), or, (ii) already in

explicit-context form and therefore copied directly to ê (step ´ � ¸ � ´ � ²). After every triple in

M has been considered, ê is checked for emptyness. If ê is empty, then M is removed fromV
(step ´ � ½), otherwise the content of M is replaced by that of ê (step ´ � �). The output of

the algorithm is the modified version of
V

.

The prepared version of ����
'� , with respect to # � , is given in Table 7.2. We write �P%5#8+
to denote an LFS, � , that has been prepared using scope graph # . The modified version of

�	��
d� is therefore referred to as ����
R�,%5#��@+ .

Inputs:
V

(set of complex tokens), # (scope graph)
Output: a modification of

V
>

for each M§p V do
´ � ´ êb@¼� � A
´ � ¸ for each

¨ m3(Zï�(o� © psM do
´ � ¸ � ´ if u7Y=U � VA�:t7l Y�%YmPï	�ý(*#8+BÎxÏ»Ð]Ñ
´ � ¸ � ´ � ´ Z @ � ¨ �3(Zï�(oz © è�� l v k k j %y�>+�¤ � l v k k j %yz~+�¤ÿ´»��u:Y=U5� V=�7t7l Y�%y�Qï�z<(*#8+ � A
´ � ¸ � ´ � ¸ if m«¤ íÁ��� ¤�í then êÍ@ êÓÒ Z A
´ � ¸ � ´ � ½ if m9*¤ íÁ��� ¤�í then êÍ@ êÓÒ�� ¨ �3(Zï�(oz © è ¨ �3(Zï�(oz © p Z � �«¤1m � A
´ � ¸ � ´ � � if m«¤ íÁ���r*¤�í then êÍ@ êÓÒ�� ¨ �3(Zï�(oz © è ¨ �3(Zï�(oz © p Z � z$¤â� � A
´ � ¸ � ´ � ² if m9*¤ íÁ���r*¤�í then êÍ@ êÓÒ�� ¨ m3(Zï�(o� © � A
´ � ½ if ê ¤ba then

V @ V Ô �KM � A
´ � � else Mb@ êÕA� return

V
;

Algorithm 7.1: Preparing an LFS for TOG construction

7.3.2 Node creation

After an LFS has been prepared, so that all of its token specifications contain triples that

are in explicit-context form and compatible with the scope graph, the next stage in the

Chapter 7. Token-ordering graphs 140

����
d�,%5#���+Ó¤Ì�æ�AºÃ¤ �
� \@� �]^� � (
�=F ¤ �
� \@� "]^� � (
� ¤ �b��\Z�]4z è9�3(oz«p��:� (4� (4� � (4� " (NL �R� (
x ¤ �b��\K%I� Å � +@%5�$� Å �$� + K]4z�èE�d(ozãp»�^� (*�
(4� � (4� " (NL �R� �

Table 7.2: The prepared specification of ����
 � , with respect to # �

construction process is to create the nodes for the graph. Each node of a non-atomic TOG

is associated with a (possibly infinite) set of triples, such that the triples associated with

any particular node belong to the same token specification. The task of the node creation

stage is to map the set of tokens of an LFS to a set of graph nodes. We need to decide,

therefore, the nodes that are required in the graph for each token. One possibility is to

assign a node to each individual triple of every complex token. This solution may suffice

for simple specifications, containing relatively few triples, but it is clearly inadequate for

specifications that contain an infinite number of triples: a TOG must contain a finite number

of nodes. Even if the number of nodes assigned is finite, we don’t want to have graphs that

contain many more nodes than are necessary. At the other end of the scale, it is not always

possible to assign just a single graph node to each token, as evidenced by the construction

of atomic TOGs (see Appendix B).

Node-connection transitivity

The existence of a connection between two graph nodes depends on the triples associated

with the nodes. We have a directed edge (connection) from a node r to a node r¥n iff

there exists a triple associated with r that connects to a triple associated with rÈn . There

are different types of node connections and these will be defined in due course, here we’re

just interested in the fact that node connections depend on connections between triples. We

write SKeh�7�h%yk�(ok n + to denote that triple k connects to triple k n . More formally, then, we have

r É r n 	 %��¶kãp r�(ok n p r n +@%=SKeh�:�{%yk�(ok n +~+ , where “ É ” denotes a connection from one

Chapter 7. Token-ordering graphs 141

node to another.2 In order to ensure that, if there is a valid path from r to r n (r É r n)
and a valid path from r n to r n n (r nýÉ r n n), then the path r É r nýÉ r n n is also valid, the

following node-connection transitivity condition must hold:

%füý�Óp�r�(GW¢(ih�p�r n (ozãp�r n n +
\K%=SKeh�7�~%y�d(GWG+«�¦SKeh�:�¶%Öh�(oz~+~+»þ %��~û�p�r n +@%=SKeh�:�~%y�3(¢û{+s��SKeh�:�~% û<(oz{+~+:] (7.2)

For node-connection transitivity to be preserved, then, we need to make sure that, if

a triple � in r connects to a triple W in r»n , and a triple h in rÓn connects to a triple z in

r�n n , then there must exist a triple û in r»n such that � connects to û and û connects to z .
As an example, consider the tokens Ý ¤ �	�3` \@�<_<]:�ba � , Þ¦¤ �	�<_�\@�ba]:� � (b�ý_�\@�c`]:� � � ,
and � ¤Â�	�c` \@� �]:��a � . We write r ú % �'+ to refer to the û th node of token � . If we as-

sume that a single node is assigned to each token, then we have r��)%yÝE+ É r°�)% Þ.+ and

r°�4% ÞN+ É r°�4%5�3+ , because the single triple of Ý connects to the first triple of Þ (since

� ` \@� _]:� a ����� - t�� - �QY@� - t��Ó� _ \@� a]:� �) and the second triple of Þ connects to the single

triple of � (since � _ \@� `]:� � ����� - t�� - �QY@� - t���� ` \@� �]:� a).3 However, the path r��)%yÝE+ É
r � % ÞN+ É r � %5�b+ (the existence of which is implied by r � %yÝE+ É r � % ÞN+ and r � % ÞN+ É r � %5�b+)
is invalid, because the triple of Þ that the triple of Ý connects to is different from the triple

of Þ that connects to the triple of � (see Figure 7.3), and there does not exist a third triple

in Þ (the û of equation 7.2) that the triple in Ý connects to and which connects to the triple

of � . Consequently, it is clear that the node mapping is invalid and that token Þ requires

two nodes: r°�,% ÞN+�¤§�	� _ \@� a]:� � � and r�;�% ÞN+R¤§�	� _ \@� `]:� � � .

Ý ¾ É Þ ¾ É �
�c` \@�ý_<]:�3a �<_�\@�ba]:� �

�<_�\@�<`]:� � �c` \@� �]:��a

Figure 7.3: An example of an invalid node mapping

2For notational convenience, each node is interpreted as a set of associated triples (hence the use of “ × ”).
3Two triples that meet give rise to the type of node connection we refer to as “strong” (the identities joining

together without any intervening context).

Chapter 7. Token-ordering graphs 142

Note that, if an LFS consisted of just Ý and Þ , then we could assign a single node to Þ ,

because node-connection transitivity would not be compromised. Strictly speaking, then,

the nodes required by a token of an LFS depend on the other tokens in the LFS. To simplify

node assignment, however, we adopt a strategy whereby nodes are assigned to a token, M ,

without the need to consider specifications of tokens other than M . The strategy is based

on an analysis of those substrings of a triple that play an active part in the determination

of a triple connection.

Starting and finishing substrings

Two triples may connect together in one of three ways: their identities may merge, meet,

or be disjoint. The two “tightest” connections, of merging and meeting, are illustrated in

Figure 7.4, with shaded squares representing context atoms.

k ¤ ÔP\Iï])Õ
kGn¿¤ �'\Iï:n@]�P

(a) merging (b) meeting

Figure 7.4: The merging and meeting of two triples

In the case of two triples merging, such that k1¤ Ô�\Iï�])Õ , kZn�¤ �R\Iï�n@]�P , and the relation

kb����� - �PY=UW[�Y - ���,�Ie	kGn holds (Figure 7.4(a)), the three-atom rightmost substring of Ô�ïEÕ matches

the three-atom leftmost substring of �cïhnØP . In other words, only the last three atoms of

ÔEï n Õ and the first three atoms of �cï n P need to be considered in order to determine that k
merges with (and thus connects to) k n . In the case of two triples meeting (Figure 7.4(b)), we

need only consider rightmost and leftmost substrings of length two. If two triples connect

together, but their identities do not merge or meet, i.e., are disjoint, then we still need to

consider substrings of length two. The reason for this is that, for two triples, k and k@n , to

connect, such that their identities are disjoint, it must not be the case that there exists a

triple that “fits” in between the identities of k and k¢n . To determine this, we need to know

Chapter 7. Token-ordering graphs 143

the last atom of the identity of k and the first atom of the identity of k n . Consider, for

example, the triples k8¤ � ` \@� _]:� a , k n ¤µ� a \@� _]:� ` , and k n n ¤ � _ \@� a]:� _ . The trailing-

context atom of k matches the leading-context atom of k¢n , suggesting that k does connect to kon
such that their identities are disjoint. The triple k¢n n , however, fits in between the identities of

k and kGn , and therefore k does not connect to kZn . If we only consider substrings of length one

(i.e., the �da from k and the �da from kGn) then there is not enough information to determine

whether kGn n fits in between the identities of k and kZn . With substrings of length two, we get

� _ � a from k and � a � _ from k n , giving us the information we require. It is not necessary

to consider substrings of length greater than two, because the leading and trailing contexts

of a triple (which we have restricted to be of length one) cannot match any more than one

atom of another triple’s identity.

In summary, to determine that a triple k connects to a triple k*n , we only need to consider

the rightmost substring of ÔEï�Õ of length � and the leftmost substring of �cï{n�P of length � ,

where �s¤ ¸ (for connections where the identities meet or are disjoint) or �s¤ ½ (for connec-

tions where the identities merge). Any remaining atoms of ÔEï�Õ and �cï n P are immaterial

to the determination of triple connections involving k or k n . We refer to the leftmost sub-

string of a triple as a starting substring and the rightmost substring as a finishing substring.

A triple, k , then, may be characterised by the pair
¨ ø�(g © , where ø is its starting substring

and
g

its finishing substring. So, if k.¤ �3` \@�<_<]:�3a , we have
¨ �c` �ý_=(4�<_R�3a © for �»¤�¸ and

¨ �c` �ý_'�3a (4�c` �<_R�ba © for �s¤ ½ .

Preserving node-connection transitivity

We are now in a position to derive the constraint on a set of graph-node triples that ensures

node-connection transitivity is preserved. To simplify the analysis that follows, we will

restrict our attention to starting and finishing substrings of length two, i.e., those atoms

of a triple that play a part in determining the existence of “meeting” and “disjoint” triple

connections. Consider a set of triples, M , associated with a node, r . Each triple in M has an

associated pair of starting and finishing substrings that characterises it. The set of all such

Chapter 7. Token-ordering graphs 144

pairs, M>gji , gives us a finite characterisation of M , i.e., M
g5i will be finite, even if M is not. The

token, x , of �	��

� , for example, is characterised by the following set of pairs:

x g5i!¤§� ¨ ø:(g © è6ø p �^� � (ý� � (3� � � (3� " � (]LQ� (ý� � (ý� � (3� � � (b� " � (]LQ� � �g p �:� � (b� �
(3� ���'(3� ��"R(b� L�(b� � (b� �d(3� �	�R(b� ��"R(b� L �P�
Different pairs of a characterisation set may contain the same starting or finishing sub-

strings (but not the same starting and finishing substrings, of course). For example, the

pairs
¨ �$� (3� L © and

¨ � � (3� � © in x g5i share the same starting substring. Let PÂW£ø4k�W5vb��k - ø)ø¶%yÐ�+
and PµW£ø,k�W5vb��k - g ø¶%yÐ�+ be functions that return, respectively, the number of distinct starting

and finishing substrings in the characterisation set Ð . For x gji , we have PµW£ø,k�Wjvb�*k - ø^ø7% x g5i�+�¤
´ Ê and PÂW£ø,k�W5vb��k - g ø7% x gjiA+�¤ ´ Ê . Given a characterisation set, Ð , if the number of distinct

starting substrings in Ð , multiplied by the number of distinct finishing substrings in Ð ,

equals the total number of pairs in Ð , then it must be the case that every
¨ ø�(g © combination

of distinct starting (ø) and finishing (
g

) substrings is included in Ð . This is precisely the

condition required to ensure that a set of triples preserves node-connection transitivity:

Definition 7.1 A set of triples, M , is transitivity-preserving iff its characterisation set, M	g5i , is

such that è Mbg5i�èA¤ PµWGø4k�W5vb��k - ø^ø¶% McgjiA+:��PµW£ø,k�Wjvb�*k - g ø¶% Mcgji=+ .
If a complex token, M , in a prepared LFS, is a transitivity-preserving set of triples,

then M can be assigned a single graph node, otherwise, M must be partitioned into a fi-

nite number of subsets, such that each subset is transitivity-preserving and associated

with a separate graph node. Note that, if M consists of a single triple, then it is nec-

essarily transitivity-preserving, since è M
g5i�è ¤ ´�¤ ´r� ´ . The complex token x , even

though it consists of an infinite number of triples, requires only a single node, because

è x g5i�èh¤ ´ ÊAÊ ¤ÙPµW£ø,k�W5vb��k - ø^ø7% x g5i�+Å�rPÂW£ø4k�W5vb��k - g ø¶% x g5i�+ . The token Þ , in our earlier example, re-

quires two nodes, because Þ9g5i ¤ � ¨ � _ � a (3� a � � © (¨ � _ � ` (3� ` � � © � , PµWGø4k�W5vb��k - ø^ø¶% Þ�g5i�+E¤§¸ ,PµWGø4k�W5vb��k - g ø¶% Þ�g5i�+P¤ ¸ , and ¸9*¤ ¸Ç�»¸ . The algorithm given in Appendix B for partitioning

a set of context pairs (Algorithm B.1, p. 228) can also be used to indirectly partition a set

of triples, by supplying, as input, the corresponding characterisation set, so that the func-

tion �&���^v	%6.c+ returns the starting substring of pair . and the function kI���^v	%6.c+ returns the

Chapter 7. Token-ordering graphs 145

finishing substring. As an example, consider a prepared LFS that includes a token for rep-

resenting points of zero curvature where the rate of change of curvature is defined: �cY=Ufe!¤
�	�3a \Z�da�]:�	a (b�3a \Z�c_ý]:�c` (b�ba \Z�c_ý]:��a (3�R` \Z�>`!]:�<` (b�R` \Z�c_ý]:��a (3�R` \Z�c_<]:�c` � . The corre-

sponding characterisation set is as follows:

�cY=Ufe�g5i!¤ÿ� ¨ �3a �daR(ý�daq�	a © (¨ �3a �c_^(<�c_'�c` © (¨ �ba �c_^(<�>_
��a © (¨ �R` �>`	(<�>`ã�c` © (¨ �R` �c_^(<�>_
��a © (¨ �R` �c_^(<�c_'�c` © �
�cY=U e�g5i contains four distinct starting substrings and four distinct finishing substrings,

so �cY=Ufe requires more than one node, because è �cY=Ufe¶g5i�èc¤Û·£*¤Ú�C�+� . The output of Algo-

rithm B.1, with �cY=U e:g5i as input, is a partition of �>Y=Ufe7gji , such that each subset of the partition

characterises a subset of �>Y=Ufe ’s triples that is transitivity-preserving, as listed in Table 7.3.

The �cY=Ufe token requires three nodes, then, one for each subset of the partition:

rq�)%5�cY=U e:+¼¤ �	�3a \Z�da�]:�	a � (
r�;�%5�cY=U e:+¼¤ �	�3a \Z�c_<]:�<` (3�3a \Z�c_<]:��a (b�R` \Z�c_ý]:�	a (d�'` \Z�c_<]:�c` � (and

r�?�%5�cY=U e:+¼¤ �	�R` \Z�>`!]:�c` � �

Subset of partition of �>Y=Ufe7g5i Characterised triple(s)
� ¨ �3a �daR(<�da$�	a © � �	�3a \Z�da�]:�	a �
� ¨ �3a �c_^(<�c_'�<` © (¨ �3a �c_^(ý�c_'��a © (�	�3a \Z�c_<]:�<` (3�3a \Z�c_<]:��a (3�R` \Z�c_ý]:�	a (d�'` \Z�c_<]:�c` �¨ �R` �c_^(ý�c_'��a © (¨ �R` �c_^(ý�c_'�<` © �
� ¨ � ` � ` (<� ` � ` © � �	� ` \Z� `]:� ` �

Table 7.3: The three subsets resulting from a partitioning of �cY=Ufe~g5i

In the above analysis, we have assumed starting and finishing substrings of length

two. Exactly the same reasoning also applies to substrings of length three. Our choice of

substring length for node creation depends on the nature of the LFS we are considering. If

an LFS contains tokens that yield non-redundant fitted triples that only meet or are disjoint

(i.e., do not merge), then we can use substrings of length two.4 If, on the other hand, an LFS
4We could use substrings of length three for such an LFS, but this would, in general, result in more nodes

being created than are necessary.

Chapter 7. Token-ordering graphs 146

contains tokens which yield non-redundant fitted triples that do merge, then we must use

substrings of length three. We shall refer to an LFS of the former kind as a “no-merging”

LFS and one of the latter kind as a “merging” LFS. Most of the LFSs considered in the

remainder of this thesis are of the “no-merging” variety, and so, unless stated otherwise,

an LFS is assumed to be of this kind and we will use starting and finishing substrings of

length two for node creation.

Node assignment algorithm

The method of assigning nodes to tokens, described above, is formalised as Algorithm 7.2.

The algorithm takes as input a set of complex tokens,
V

, and returns a set of graph nodes,Û
. Its operation is as follows. Each token, M�p V , is considered in turn (step �). First, the

characterisation set for M is generated, by extracting the starting and finishing substrings

of length � from each triple in M , with the result stored in ê (steps ¸ � ´ and ¸ � ¸). Next, the

characterisation set, ê , is partitioned using Algorithm B.1, with the result assigned to <
(step ¸ � ½). A node is then created for each subset, / , of the partition of ê (step ¸ � ² � ¸). Each

node is assigned a pair of sets, as opposed to a set of triples. The first element of the pair

is the set of distinct starting substrings of / , and the second element is the set of distinct

finishing substrings of / . This is the minimal amount of information required in order

to characterise (and thus recover) the associated set of transitivity-preserving triples. The

nodes created for each Mÿp V are added to the result set,
Û

(step ¸ � ² � �).
An application of the algorithm, with

V ¤ �	��
��,%5#��@+ as input, yields the set of nodesÛ %&�	��
d�,%5#��K+o+ , listed in Table 7.4. Figure 7.5 shows a partial version of TOG %&����
��4(*#��@+
after the node creation stage and before the addition of node connections. In keeping with

the convention adopted for atomic TOGs, a node is depicted as circular if all of its associated

triples have identities that are single point atoms, otherwise it is depicted as rectangular.

The nodes for ��º and �=F are therefore shown as circles and the nodes for � and x are shown

as rectangles.

Chapter 7. Token-ordering graphs 147

Inputs:
V

(set of complex tokens), � (substring length)
Output:

Û
(set of graph nodes)

> Û @ � � A� for each M§p V do
¸ � ´ êb@ � � A
¸ � ¸ for each

¨ m3(Zï{(o� © p«M do
¸ � ¸ � ´ êb@ ê£Ò�� ¨ � l g k f �Aø,k - ø�m<Õ@ø4k � %YmQïR�ý(o�c+*(� W k j k f �Aø4k - ø)mcÕ@ø4k � %YmQï��ý(o�c+ © � A
¸ � ½ <Ù@¥.ýÔ � k�W5k�Wj�^v	%&ê�+2A
¸ � � W�@ Ê A
¸ � ² for each / pC< do
¸ � ² � ´ W=@0W Å ´ÜA
¸ � ² � ¸ create r�Fo% M�+2A
¸ � ² � ½ r!FZ% M�+�@ ¨ �dø è ¨ ø:(¢� © p�/ � (b� g è ¨ ��(g © p�/ � © A
¸ � ² � � Û @ Û Ò��,r�Fo% M�+ � A
Ý

return
Û A

Algorithm 7.2: Creation of the graph nodes for a restricted and prepared LFS

Û %&�	��
 � %5# � +o+�¤Ì�6r � %y� º +~¤ ¨ �^� ��� � (>�:�	��� � © (
r°�4%y�=Fj+R¤ ¨ �^� � " � (>�:� " � � © (
r°�4%5�A+È¤ ¨ �:� � (3� � (b� � � (b� " � (�LE� � (>�^� � (<� � (<� � � (ý� � " (ý� L � © (
r°�4% x +$¤ ¨ �^� � (<��� (3� � � (b� " � (®LN� (<� � (<��� (b� � � (3� " � (]LQ� � (

�:� � (b� �'(b� � � (3� � " (b� Lý(b� � (3� �d(3� � � (b� � " (d� L � © �
Table 7.4: The set of graph nodes required for �	��
��,%5#��@+

vivo / C

Figure 7.5: A partial version of TOG %&�	��
��,(*#���+ containing only the nodes

Chapter 7. Token-ordering graphs 148

7.3.3 Connecting the nodes

The final stage of the TOG construction process involves connecting together the nodes of

the graph. Consider two nodes, r and r n (not necessarily distinct). We define three types

of connections, of different strengths, that can exist from r to r n : strong, weak, and remote.

The connection types are not mutually exclusive, i.e., more than one type may exist from

r to r�n . The existence of each type of connection, for a given pair of nodes, is determined

by considering the set of triples associated with each node. Recall from Algorithm 7.2 that,

for reasons of efficiency, rather than assigning to a node its actual set of associated triples,

Ð (which may be infinite), we assign a pair of (necessarily finite) sets,
¨

(Z� © , where
 is the

set of distinct starting substrings in Ð and � is the set of distinct finishing substrings in Ð .

For r°�4%5�A+ of TOG %&����

�,(*#���+ , for example, we have
§¤ �:� � (3� � (b� � � (b� " � (®L9� � and

�§¤§�^� � (ý� � (c� � � (<� � " (ý� L � , which characterise the 25-element set of triples associated

with r � %5�A+ : Ð ¤Â�b��\Z�]4z è«�3(oz�p �:� (4� (4�	�R(4�	"'(NL �R� . The existence of one or more of

the connection types from ré¤ ¨
'(Z� © to r�n	¤ ¨
'n (Z�1n © is determined by considering the

finishing substrings, � , of r , and the starting substrings,
En , of r�n , as follows (where ÞÉ ,ß
É , and

ôÉ denote strong, weak, and remote connections respectively):5

r ÞÉ r n 	 %�� g p��6(¢ø n p�
 n +@%^Xo��Ufeh�,[- SKeh�:�~% g (¢ø n +~+ (7.3)

r
ß
É r n 	 %�� g p��6(¢ø n p�
 n +@%x(�Y4��S - SKeh�:�~% g (¢ø n (V +~+ (7.4)

r ôÉ r n 	 %�� g p��6(¢ø n p�
 n +@%¶UfY=�Pe=�GY - SKeh�:�~% g (¢ø n (V (*#8+~+ (7.5)

The sets � and
 n may contain substrings characterising triples that can end or begin an

open curve, i.e.,
g p�� may end with “ L ” or ø�p�
�n may begin with “ L ”. In the
 and � sets

assigned to r°�,%5�A+ , for example,
 contains L9� and � contains � L . When node connections

are being determined, such starting and finishing substrings are simply ignored, because

there cannot be a connection to a triple that starts a curve, or from a triple that ends a curve.

We are now in a position to define the predicates Xo��Ufeh�,[- SKeh�7� , (�Y4��S - SKeh�:� , and UfY=�Qe=�IY - SKeh�7� .
5An inspection of equations 7.4 and 7.5 reveals that the determination of a weak connection requires a

reference to à (the set of LFS tokens), and the determination of a remote connection requires a reference to à
and the scope graph, á .

Chapter 7. Token-ordering graphs 149

Strong connections

Consider two triples, k and k n , characterised by
¨ ø�(g © and

¨ ø n (g n © , respectively. The former

triple strongly connects to the latter, i.e., Xo��Ufeh�,[- SKeh�:�h% g (¢ø n + holds, iff k may merge into, or

may be met by, k n . In other words, two triples strongly connect if they may join together

without their identities being separated by one or more non-identity atoms. In terms of

starting and finishing substrings, then, k strongly connects to k*n iff g ¤�ø,n . For a no-merging

LFS,
g

and ø)n will be of length two and for a merging LFS,
g

and øAn will be of length three.

In the former case,
g

and ø)n being equal implies a meeting of triples and, in the latter case,

a merging, as shown by the alignment diagrams of Figure 7.6.

Xo�*U eh�,[- SKeh�7�h% g (¢ø n +â	 g ¤ ø n (7.6)

As an example, consider rã�,%y�Aº4+ of TOG %&����

�,(*#���+ . There exists a strong connection

from r°�,%y�=º4+ to r°�,%5�A+ , since the single distinct finishing substring assigned to r��)%y�=ºK+ , � � � ,

is also an element of the set of distinct starting substrings assigned to r��)%5�A+ . This is the

only strong connection from rã�)%y�Aº@+ , since � � � is not an element of the sets of distinct

starting substrings assigned to r«�4%y�=Fj+ and r°�)% x + . There are five other strong connections

in the graph: r � %5�A+ ÞÉ r � %y� º + , r � %5�A+ ÞÉ r � %y� F + , r � %y� F + ÞÉ r � %5�A+ , r � %5�A+ ÞÉ r � % x + , and

r � % x + ÞÉ r � %5�A+ . The completed TOG is shown later on, in Section 7.4, with strong connec-

tions drawn as solid lines.

no-merging LFSg ¤ Ô9Õ
ø n ¤âmQ� Ô Õm �

merging LFSg ¤ Ô9Õý�
ø n ¤âmN�:n Ô Õ �m � n

Figure 7.6: Substring equality implies a meeting or a merging

Chapter 7. Token-ordering graphs 150

Weak connections

A triple, k , weakly connects to a triple, k n , where k is characterised by
¨ ø�(g © and k n by

¨ ø n (g n © ,
iff (i) the single trailing-context atom of k is the same as the single leading-context atom of

k n , (i.e., the triples join together such that their identities are separated by a single atom),

and (ii) there does not exist a triple, from any token specification of the prepared LFS, that

fits in between the identities of k and kZn . Let
g ¤�ÔEÕ<� , ø,n{¤ mQ��n , and

V
be the set of tokens

of the prepared LFS. If the prepared LFS is of the no-merging kind, then Ôs¤ãn ¤ í . The

predicate (�Y4��S - SKeh�:� , then, is defined as follows:

(�Y4�ÂS - SKeh�7�h% g ¤�Ô9Õ<�^(¢ø n ¤1mQ��n�(V +â	 �.¤1m§� ¨ Õ)(Z�)(o� © *prÌ V
(7.7)

The alignment diagram for weak connections is shown in Figure 7.7. An example of

a weak connection in TOG %&�	��
R�4(*#���+ is given by r��,%5�A+ and r°�)% x + . There exists a weak

connection from r��)%5�A+ to rq�,% x + , because
g ¤ÛÕ<�°¤ � � � is a distinct finishing substring

of r°�)%5�A+ , ø n ¤ämQ��¤Û� � � is a distinct starting substring of r«�,% x + , � ¤äm , and
¨ Õ)(Z�^(o� © (the

triple � \@� �]:�) is not contained in any token specification of �	��
	�,%5#���+ . Two other weak

connections exist in the graph: r«�)% x +
ß
É rq�)%5�A+ and r°�,% x +

ß
É rq�)% x + . The weak connections

reflect the fact that � º and � F represent only outward- and inward-pointing angles that are

adjoined, on both sides, by straight-line segments, i.e., � º and � F were specified so as to

represent vertices of polygonal shapes.6 The scope graph, however, since it is not restricted

to polygonal shapes, generates descriptions of curves that contain other kinds of angles,

not represented by any token in �	��
R� .
In a TOG, weak connections are drawn as dashed lines (see Figure 7.9).

g ¤ ÔEÕ<�
ø,n�¤âmN�:n Ô Õ �m � n

Figure 7.7: Alignment diagram for weak connections

6Recall that the complex tokens å2æ , å2ç , and è of éëê#ì E were taken from í�î�éëïÂð .

Chapter 7. Token-ordering graphs 151

Remote connections

For weak connections, the identities of two triples are separated by a single non-identity

atom. With a remote connection, two triples join together such that their identities are

separated by more than a single atom, i.e., a string of atoms,
 , of length two or greater. A

remote connection only exists, however, if there exists an
 such that there does not exist a

triple, from any token specification of the prepared LFS, that fits
 . First, we define what

it means for a triple to fit a string of atomic tokens:

Definition 7.2 The triple
¨ �£(Zï�(ok © fits the string of atomic tokens,
 , iff XKT7t,Xo��U ���)[ý%5�=ï�k�(*
�+ holds,

where XKT:t)Xo�*U5���,[<%y�3(oz{+ is a predicate that holds iff � is a substring of z .7

Consider, then, two triples, k and kZn , characterised by
¨ ø�(g © and

¨ ø^ny(g n © respectively. Letg ¤ ÔEÕ<� , ø n ¤ÚmN�:n ,
V

be the set of tokens of the prepared LFS, and # the related scope

graph. If the LFS is of the no-merging variety, then we have Ô�¤ñnÁ¤ í . The identities

of k and k n may be separated by exactly two atoms iff the path Õ É � É m É � exists in

(i.e., iff the string Õ<�¸mN� is derivable from #), where Õ is the last atom of the identity of

k and � is the first atom of the identity of kZn . Note that Õ and � need to be included in the

path (we can’t just check for the presence of � É m), due to the fact that certain atoms in

the scope graph may be represented by more than one node. As an example, consider the

case where
g ¤ÂÕý��¤ � �dO and ø n ¤DmQ� ¤ � � , with # the level-2 atomic TOG (p. 88).

The context atoms, � and m , do connect together, since ��O É � exists in # . However, the

path � É �dO É � É � does not exist in # , because a �RO atom cannot be flanked, on both

sides, by a � atom. In general, the identities of k and k¢n can be separated by all strings of the

form �<ÐÙm , where � l v k k j %yÐ»+6Æ Ê and Õý�<ÐÙmN� is derivable from # (see Figure 7.8). Triple k
remotely connects to triple kon iff there exists an Ð such that no triple from any specification

of the LFS fits the string Õý�<ÐãmN� :
UfY=�Qe=�IY - SKeh�:�~% g ¤�Ô9Õ<�)(¢ø n ¤1mQ��n�(V (*#8+ò	 %��¶Ð»+

%=u:Y=U5� V=�7t7l Y�% Õ<�<ÐÙmQ��(*#8+«�ç�6%�� ¨ �G(Zï�(ok © p Ì V +@%^XKT7t,Xo��U ���)[<%5�=ï�k�(ýÕ<�<ÐómQ�h+~+~+ (7.8)

Chapter 7. Token-ordering graphs 152

g ¤�Ô9Õý� ø,n{¤1mN��n
Ô Õ � ôµôKÐ¥ô¡ô m � n

Figure 7.8: Alignment diagram for remote connections

In a TOG, remote connections are drawn as dotted lines. There are no connections of

the remote kind in TOG %&����
 � (*# � + (see Figure 7.9). We can establish this fact, without con-

sidering starting and finishing substrings, as follows. Every occurrence of � , � , and � , in

an atomic description obtained from #q� , is represented by one of the tokens of ����
�� . In

particular, occurrences of � are represented by � , and occurrences of � and � are repre-

sented by x . Since � , � , and � account for all of the interval atoms in #�� , it follows that

all atoms in a description that are not represented (i.e., not associated with the identity

of any fitted triple) are point atoms. No two point atoms can occur consecutively in a

description, therefore, all unrepresented portions of a description must be of length one.

Consequently, only strong and weak connections are possible, since a remote connection

requires the existence of an unrepresented portion of length greater than one.

To establish the non-existence of remote connections computationally, we need to con-

sider starting and finishing substrings. As an example, consider the determination of

r°�4%5�A+ ôÉ r°�)% x + , which exists iff UfY=�Pe=�GY - SKeh�:� holds when given a finishing substring,
g

,

of r°�4%5�A+ , and a starting substring, ø n , of r°�)% x + . We will consider just one of the candidate

pairs:
¨ g ¤ � � � (¢ø n ¤ ��� © . For

g
and ø n , string Ð of equation 7.8 cannot be empty, because

�	� É � does not exist in # � . If Ð is of length one, then Ð must be either � or � , giving us

��¤ Õ<�'� mN��¤�� �	� � ��� and � ¤ Õ<�'� mN��¤�� �	� � � � . However, triples
¨ ���R(4� (*� © and

¨ � � (4� (*� © of x fit � and � respectively. Therefore Ð , if it does exist, must be of length two

or more. Upon inspection of G � , it is clear that the string Õ<�<Ð , where Ð is greater than, or

equal to, two atoms in length, must begin with one of the following twelve substrings:
7Including the case where õeqCö .

Chapter 7. Token-ordering graphs 153

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � " � � � � � � � � � � "
� � � � � � � � � � " � � � � �

For each string in the first or third column, there exists a triple in x that fits to it:
¨ � � (4� (4� � © fits � � � � � � ,

¨ � � (4� (*� © fits � � � � � , etc. Similarly, for each of the four strings

in the second column, there exists a triple in � that fits to it. We conclude that the Ð of equa-

tion 7.8 does not exist for
g ¤Á� � � and ø n ¤¿� � . The same result (i.e., non-existence of

Ð) is obtained for each of the other candidate pairs of finishing and starting substrings,

allowing us to assert the non-existence of r«�)%5�A+ ôÉ rq�)% x + .
The types of connections present in a TOG provide information about the descriptive

capabilities of the underlying LFS. In general, the presence of weak and/or remote con-

nections in a TOG may suggest a weakness in the design of an LFS, or the use of an inap-

propriate scope graph. The usefulness of the connection types will become apparent in the

next chapter, where we analyse the boundary-based schemes of Chapter 2.

7.4 Construction algorithm

The complete procedure for constructing a non-atomic TOG for a restricted LFS is given

by Algorithm 7.3. The algorithm takes, as input, the set of complex tokens of a restricted

LFS,
V

, a scope graph, # , and the length of starting and finishing substrings to use, � .

The algorithm operates as follows. In the first and second steps,
V

is prepared (using

Algorithm 7.1) and nodes are assigned to each of its tokens (using Algorithm 7.2). The re-

mainder of Algorithm 7.3 adds the node connections to the graph, by considering each pair

of nodes in turn (step ½) and their starting and finishing substrings (step ½ � ´). The three

predicates Xo�*Ufeh�)[- SKeh�7� , (�Y4�ÂS - SKeh�:� , and UfY=�Pe=�GY - SKeh�:� are used to determine the existence of

node connections (steps ½ � ´ � ´ � ´ to ½ � ´ � ´ � ½). Step ½ � ´ � ´ ensures that finishing substrings that

end a curve and starting substrings that begin a curve are ignored. The result of the al-

Chapter 7. Token-ordering graphs 154

gorithm is TOG % V (*#!+ , a graph encoding the ordering constraints for the tokens of
V

with

respect to the scope defined by # .

The completed TOG %&�	��
 � (*# � + is shown in Figure 7.9, together with a table detailing

its node connections. The presence of weak connections in TOG %&����
 � (*# � + indicates the

possibility that not all atoms of an atomic description, after token fitting, belong to the

identity of a fitted triple. This will be the case for any description that contains an angle

(� � or � ") that is not bounded on both sides by a straight-line segment (�). For an example

of such a description, the reader is referred back to Figure 7.1 (p. 135).

Inputs:
V

(set of LFS complex tokens), # (scope graph), � (substring length)
Output: TOG % V (*#8+
> V @÷. �¡l .ýÔ �¡l % V (*#8+2A� Û @ � �µl Ô7k l - vb�ÜP l ø7% V (o�c+2AÝ

for each
¨ rø@ ¨

(Z� © (�r�n�@ ¨

ny(Z�1n ©{© p Û � Û do

½ � ´ for each
¨ g @ Ô9Õ<�)(cø,n�@0mN�:n © p��\��

n do

½ � ´ � ´ if �?*¤1LÀ�Xm9*¤1L_ÎxÏ»Ð�Ñ
½ � ´ � ´ � ´ if Xo��Ufeh�,[- SKeh�:�~% g (¢ø,n�+ then create r ÞÉ r�nYA
½ � ´ � ´ � ¸ if (�Y4��S - SKeh�:�~% g (¢ø n (V + then create r

ß
É r n A

½ � ´ � ´ � ½ if UfY=�Pe=�GY - SKeh�:�¶% g (¢ø,ny(V (*#8+ then create r ôÉ r�nYA
Algorithm 7.3: Constructing a non-atomic TOG for an LFS

7.5 Example TOGs

In this section, we give TOGs for the three LFSs specified in Section 6.4 for representing

polygonal shapes: /�01��2 � , /�01�	2 ; , and /�08�	2 ? . For their construction, we use the scope

graph, #6- , of Figure 7.10. The TOGs for /�08�	2
� , /�01�	2<; , and /�08�	2<? are shown in Fig-

ures 7.11, 7.12, and 7.13 respectively, along with the associated prepared LFS specification

and the set of graph nodes assigned to each token.

Chapter 7. Token-ordering graphs 155

vo vi/

C r°�,%y�=º4+ rq�)%y�=F5+ rq�,%5�A+ rq�)% x +
r � %y� º +

r°�)%y�=F +

r°�)%5�A+

#ù
r°�)% x +
#ù ù

Figure 7.9: TOG %&�	��
'�4(*#��@+ and its table of node connections

The differences between the three TOGs reflect the subtle differences in the specifica-

tions of the schemes. Any pair of polygonal shapes that have different atomic descrip-

tions can be distinguished by each of the three schemes. /�01�	2�� describes a polygon with

minimal information, since only vertices are represented. In /�08�	2d; , straight-line seg-

ments are explicitly included in the representation, so /�01�	2d; is, in a sense, more complete

than /�01��23� . /�08�	2<? , which is a merging scheme, combines the properties of /�01��2R� and

/�08�	2<; , since it is minimal (in terms of the number of tokens in a description) and also

complete, because vertices and straight-line segments are included. /�08�	2 ? may be inter-

preted as a constructive scheme, in which shapes are formed by arranging convex and

concave “parts” (� and à).

An LFS designed to represent only polygonal shapes is unable to adequately represent

shapes of a different kind, such as those that can be adequately described by �	��
9� , for

example. To illustrate this, we give a TOG for /�01��2b; constructed with respect to #$�
(see Figure 7.14). TOG %&/�08�	2>;=(*#��@+ is, in fact, fully connected with respect to both weak

and remote connections, i.e., between any pair of nodes there exists a weak and a remote

connection. The presence of so many remote connections confirms the fact that /�01��2 ; is

inadequate for representing the scope of curves defined by #�� .

Chapter 7. Token-ordering graphs 156

U> U<Z

Figure 7.10: The scope graph, #N- , for polygonal shapes

/�01�	2 � %5# - +Ó¤é�E� º ¤ �
� \@�	��]^� � (
�=F ¤ �
� \@� "]^� ���

Û %&/�08�	23�4%5#6-7+o+�¤Ë�.r°�4%y�Aº4+¼¤ ¨ �^� � � � (>�:� � � � © (
r°�4%y�=Fj+ ¤ ¨ �^� � " � (>�:� " � � © �

vo vi

r°�4%y�Aº4+ rq�,%y�=Fj+
r°�)%y�AºK+ ù ù
r � %y� F + ù ù

Figure 7.11: /�01�	2d�,%5#9-:+ , its assigned nodes, and TOG %&/�01�	2'�4(*#9-7+

/�01��2ý;A%5#9-:+Ó¤é�E�Aº ¤ �
� \@� �]^� � (
�=F ¤ �
� \@� "]^� � (
� ¤ �b��\Z�]4z�èE�3(oz«p��:� � (4� " (NL �R�P�

Û %&/�08�	2 ; %5# - +o+�¤Ì�6r � %y� º +Ë¤ ¨ �^� ��� � (>�:�	��� � © (
r°�4%y�=Fj+ ¤ ¨ �^� � " � (>�:� " � � © (
r°�4%5�A+ ¤ ¨ �:� � � (3� " � (®LE� � (>�^� � � (ý� � " (<� L � © �

vo vi/

rq�)%y�AºK+ rq�,%y�=Fj+ r°�)%5�A+
r � %y� º +

r°�,%y�^Fj+

r°�,%5�A+

Figure 7.12: /�01��2c;=%5#6-7+ , its assigned nodes, and TOG %&/�01��2>;A(*#9-:+

Chapter 7. Token-ordering graphs 157

/�08�	2<?=%5#6-7+�¤é�1� ¤ �b� \Z� � � �]4z�èE�d(ozãp»�:� � (4� " (NL �R� (
à ¤ �b� \Z� � " �]4z�èE�d(ozãp»�:� � (4� " (NL �R�P�

Û %&/�01��2ý?A%5#9-7+o+�¤Ì�9r°�)%I�Q+¼¤ ¨ �:� � � � � (3� " � � � (�L9� � � � (
�:� � � � � (b� � � � " (d� � � L � © (

r°�)%IàQ+¼¤ ¨ �:� � � � " (3� " � � " (�L9� � " � (
�:� " � � � (b� " � � " (d� " � L � © �

> <

r°�,%I�Q+ rq�,%IàQ+
rq�,%I�Q+

rq�,%IàQ+

Figure 7.13: /�01��2c?=%5#6-7+ , its assigned nodes, and TOG %&/�01��2>?A(*#9-:+

/�01�	2<;A%5#���+Ó¤Ì�9�Aº ¤ �
� \@� �]^� � (
�=F ¤ �
� \@� "]^� � (
� ¤ �b��\Z�]4z è9�3(oz«p��:� (4� (4� � (4� " (NL �R���

Û %&/�08�	2<;=%5#���+o+Ó¤é�6rq�,%y�Aº4+Ë¤ ¨ �^� � � � (>�:� � � � © (
r � %y� F + ¤ ¨ �^� ��" � (>�:�	"�� � © (
r � %5�A+ ¤ ¨ �:� � (3� � (b�	��� (3�	"!� (�LE� � (

�^� � (<� � (ý� � � (<� � " (c� L � © �

/ ivov

rq�,%y�Aº4+ r°�)%y�=Fj+ r°�,%5�A+
r°�)%y�=º4+ ù§ò ù§ò
#ù§ò
r°�)%y�^F5+ ù§ò ù§ò
#ù§ò
r°�)%5�A+
#ù§ò
�ù ò ù§ò

Figure 7.14: /�08�	2c;^%5#��@+ , its assigned nodes, and TOG %&/�01��2>;A(*#���+

Chapter 7. Token-ordering graphs 158

7.6 Summary

In this chapter, we have developed a three-stage procedure for constructing non-atomic

TOGs, culminating in Algorithm 7.3. A TOG is constructed for an LFS with respect to a

class of curves, specified by a scope graph. To simplify the construction process, we re-

stricted ourselves to those LFSs whose tokens have leading and trailing contexts of length

at most one atom. In the first stage of the process, an LFS is converted into explicit-context

form and any triples inconsistent with the scope graph are removed. The second stage

assigns graph nodes to each token of the LFS, while ensuring that node-connection transi-

tivity is not compromised. The final stage of the process connects the nodes of the graph to-

gether, according to the set of triples associated with each node. We defined three connec-

tion strengths. Strong connections indicate the existence of triples that merge or meet, such

that their identities join together without any intervening non-identity atoms. Weak and

remote connections indicate the existence of triples that may join together more loosely, in

the sense that their identities are separated by one or a number of non-identity atoms. The

types of connections present in a TOG reflect the descriptive suitability of the LFS with

respect to the scope used in the construction of the TOG. It was stated at the beginning of

the chapter that atomic and non-atomic TOGs have the same meaning. The choice of solid

lines for representing strong node connections in non-atomic TOGs is consistent with the

appearance of node connections in atomic TOGs.

We finished the chapter by revisiting the polygonal schemes defined in Section 6.4. A

non-atomic TOG was constructed for each of the three schemes, with respect to an appro-

priate scope graph. In the next chapter, we construct non-atomic TOGs for the boundary-

based schemes of Chapters 2 and 3, using them as a basis for comparing the discriminatory

power of the schemes.

Chapter 8

Analysis of existing schemes

In this chapter, we revisit the qualitative boundary-based schemes of Chapters 2 and 3. We spec-

ify the primitives of each scheme as complex tokens and show that each scheme is a local-feature

scheme (LFS). We also construct, for each scheme, token-ordering graphs (TOGs) that can be used

to compare the relative discriminatory power of the schemes.

8.1 Contour codons

We will begin by considering the set of five contour codons given by Richards & Hoffman

(1987), i.e., the set �)¬ ` (¢¬ a (4­ ` (4­ a (¢® � , which includes a subdivision of the original ¬ codon1

into ¬ ` and ¬ a , reflecting the fact that curves bounded by minima that contain no points of

zero curvature can be either convex or concave. We looked at these descriptors and some

of their properties in Section 2.3.1, as part of our review of the boundary-based approach to

qualitatively representing shape. For ease of reference, the exemplar curve segments that

the codons represent are reproduced in Figure 8.1. Recall that the choice of label for each

codon reflects the number of points of zero curvature contained within the curve segment.

Segments that don’t contain any points of zero curvature are either convex (¬ `) or concave

(¬ a). Curve segments containing a single point of zero curvature are distinguished by
1Found in (Hoffman & Richards 1982).

159

Chapter 8. Analysis of existing schemes 160

noting whether the point of zero curvature occurs before (­ a) or after (­ `) the point of

maximum curvature also contained within the segment.

2110 0+ +

Figure 8.1: Hoffman and Richards’ contour codons

Curvature plots corresponding to the five codon types are given in Figure 8.2, where

curvature is denoted by � and arc length by ø . A fact that is not made clear by the plots is

that maxima and minima are not allowed to be points of zero curvature. For if they were,

then every one of the five types could contain two points of zero curvature, e.g., imagine

shifting the plot of ¬ ` in Figure 8.2 down so that its two minima coincide with the ø -axis.

Also disallowed are curvature inflection points where the gradient is zero. In effect, then,

curvature is only permitted to be zero at those points where the rate of change of curvature

is non-zero. This constraint is enforced by the following rule:

�A% ø=+R¤ Ê þ � n % ø^+O*¤ Ê (8.1)

Also disallowed are points of curvature discontinuity, where the value of curvature is

undefined. Curves are assumed to be smooth, such that there exists no point where either

the curvature or the rate of change of curvature is undefined.

In order to show that the set of contour codons form an LFS, we must specify each of

the contour codons as a complex token and then verify that (i) each token is MAMO, and

(ii) no two tokens interfere. Definitions for these constraints are given in Section 6.2. We

are then in a position to construct TOGs encoding the ordering constraints for the set of

contour codons with respect to particular scope graphs.

Chapter 8. Analysis of existing schemes 161

0+ 1+ 10

0

c
2

s

Figure 8.2: A curvature plot of Hoffman and Richards’ codons

8.1.1 LFS specification

Codons are characterised by points of maximum, minimum, and zero curvature. An ex-

tremum point (a maximum or minimum of curvature) is identified by detecting that the

rate of change of curvature (� n) is zero. Therefore, the codons need to be specified at level 3

or above in the atomic hierarchy, because the qualitative value of �^n is given by the third

component of a curve state. Naturally, we choose level 3, so as to minimise the complexity

of our specifications. In order to distinguish a maximum from a minimum, the gradient

before and after the extremum must be considered. A positive maximum, for example,

is a positive stationary point where the curvature before the point is increasing and the

curvature after the point is decreasing: � ` \@� _]:� a . For a minimum, curvature decreases

before the stationary point and increases afterwards, giving � a \@� _]:� ` . Each codon rep-

resents a class of curve segments identified by a particular string of atoms. Consider, for

example, the codon type ¬:` , represented by the leftmost curvature-variation pattern in

Figure 8.2. An occurrence of ¬7` is given by the occurrence of a positive minimum, fol-

lowed by a positive maximum, followed by another positive minimum, i.e., the string of

atoms �3a �<_R�<` �<_R�ba �<_R�<` . There is a one-to-one correspondence between this string and

occurrences of ¬ ` . Similar strings can be given for each of the four other codon types.

We have all the information we need to define the contour codons as complex tokens.

Before we can formulate the specifications, however, we need to decide which strings of

Chapter 8. Analysis of existing schemes 162

atoms should constitute the codon identities and which atoms, if any, should constitute

the leading and trailing contexts. There is an ambiguity: should the minima that bound

a codon form part of the codon’s identity, or should they be treated instead as contextual

information? There seems no good reason to prefer either of the two possibilities, so we

shall consider them both in the analysis that follows. Set C!CQD contains codon specifications

with the minima excluded from the identity strings. The minima are given, instead, as the

leading and trailing contexts of each specification. In C�CNF , the minima are included in the

identity string of each specification.

C!CED�¤é�æ¬A` ¤ �	�ý_�\@�c` �ý_R�3a]:�ý_ � (
¬ a ¤ �	� _ \@� ` � _ � a]:� _ � (
­ ` ¤ �	� _ \@� ` � _ � a � a � a]:� _ � (
­ a ¤ �	� _ \@� ` � ` � ` � _ � a]:� _ � (
® ¤ �	� _ \@� ` � ` � ` � _ � a � a � a]:� _ �Â�

C!C F ¤é�æ¬A` ¤ ��\@�ý_R�c` �<_
�3a �<_�] � (
¬7a ¤ ��\@�'_��R` �'_R��a �'_<] � (
­4` ¤ ��\@�ý_R�c` �<_
�3a �da$��a �
_<] � (
­^a ¤ ��\@�'_��R` �b`��c` �ý_R�3a �ý_<] � (
® ¤ ��\@�'_��R` �b`��c` �ý_R�3a �daq��a �
_<] � �

Table 8.1: Alternative sets of contour-codon specifications: C�C D and C�C F

We now need to check that both C�C D and C�C F define an LFS. First, consider C�C D . We

need to verify that each token in C!C.D is MAMO and that no two tokens in C!C.D interfere.

Recall that a token is MAMO (“merge and meet only”) so long as, when it is fitted to an

atomic description, its non-redundant fitted triples only merge, meet, or are disjoint. In

addition, the problematic triple configuration pc5 must not exist (see Figure 6.2, p. 121).

Every token specification contains a single triple. Consider the triple in C!C�D for the codon

type ¬ a : kE¤¦� _ \@� ` � _ � a]:� _ . The single valid alignment that exists between k and itself

is shown in Table 8.2. In the alignment, the identities are disjoint, so none of the thirteen

Chapter 8. Analysis of existing schemes 163

triple relations hold between k and itself. The ¬ a token is therefore MAMO. The codon

type ¬ ` has a similar valid alignment and is also MAMO. The triples of the remaining three

tokens do not have any valid alignments when considered independently. We conclude,

then, that all five tokens of C�C D are MAMO, as required. In general, any complex token,

M , that contains a single triple, k , is MAMO, unless kR����� - e^V=Y=U5l �7m.k holds, in which case the

token cannot be MAMO, because a triple that overlaps itself cannot, in addition, subsume

the overlapping of its own identities. The problematic configuration of pc5 cannot exist in

M , because pc5 involves the merging and meeting of triples: a single triple is unable to both

merge with itself and meet itself. Furthermore, a triple with an identity string of length less

than four cannot overlap itself.2 These results give rise to the following two lemmas:

Lemma 8.1 If a complex token, M , contains a single triple, k , and ��k��P��� - e^V^Y=Ujl �7m.k holds, then M
is MAMO.

Lemma 8.2 If a complex token, M , contains a single triple, k , and the length of the identity string

of k is less than four, then M is MAMO.

�'_ �R` �'_ �	a �
_
� _ � ` � _ � a � _

Table 8.2: The single valid alignment of �	_�\@�R` �'_R��a]:�
_ and itself

Having ascertained that all of the complex tokens in C!CQD are MAMO, we need to ver-

ify that the non-interference relation, defined in Section 6.2.2 and symbolised by ¢ , holds

between each pair of distinct tokens in C�C.D . Given two distinct tokens, M and M n , Mb¢âM n
holds (M and MQn do not interfere) iff the only relations that hold between the triples of M
and MQn are of the merging and meeting variety, i.e., ��Uj­ to ��U|{ . For C�C D , none of the triple

relations hold between triples from different token specifications. Therefore, there can be
2For a triple to overlap another triple, the identities of both triples must be at least three atoms in length.

For a single triple with an identity of length three to overlap itself, the first atom of the identity must be the
same as the second atom. This is not possible, because an atom cannot occur consecutively in a string.

Chapter 8. Analysis of existing schemes 164

no interference between any of the tokens. Consequently, there can be no “global” occur-

rence of pc5, which requires merging and meeting relations to hold. We conclude, then,

that C!C D is an LFS of the no-merging variety.

The specifications of the alternative set, C!C F , only differ with respect to the inclusion

of the bounding minima in the identities of the codons. The contexts of each token are

left empty, indicating that all possible contexts are allowed. When determining whether

or not each token is MAMO, we find that the single triples of ¬~` , ¬7a , and ® may self-merge

(which is permissible), and that for ­ ` and ­ a there exists no valid alignment. When we

consider the relations that hold between the triples of different tokens, we find that only

the merging relation holds. We conclude, then, that C!CNF is an LFS of the merging variety.

8.1.2 TOG construction

To show how contour codons connect together, we will construct two pairs of TOGs. The

first pair will be constructed with respect to a scope graph that is representative of the class

of curves that are intended to be described by contour codons. The second pair of TOGs

will be constructed with respect to the full set of curves that can be described by strings of

atoms at level 3 in the atomic hierarchy.

Restricted scope

The scope graph that will be used for the construction of the first pair of non-atomic TOGs

for C!C D and C!C F is given in Figure 8.3. The graph, which we label # B , represents smooth

curves with continuously varying curvature, such that (i) there are no tangent-bearing dis-

continuities, and (ii) the first two derivatives of tangent-bearing are defined at every point.

Comparing #8B with the level-3 atomic TOG (Figure 4.5, p. 89), we can see that it is similar,

in terms of the atoms used and the connections present, to the subgraph constituted by the

nine-node rectangular region in the centre of the atomic TOG. The absence of � _ and its

connections is accounted for by rule 8.1. There are two nodes each for � _ and � _ , disal-

lowing curves that contain points of curvature inflection where the value of curvature is

Chapter 8. Analysis of existing schemes 165

positive or negative (see Figure 8.4). It is not clear whether Hoffman and Richards allow

such stationary points within a codon segment, and so, because their omission simplifies

the specification of the codons, we do not allow them. If we were to include non-zero points

of curvature inflection within codon identities, then the specification of each codon would

contain an infinite number of triples. The specification of ¬~` , for example, would be given

by �	�ý_�\K%I�c` �<_K+I`«�3a %I�ý_R�3a + K]:�ý_ � .

0 000

Z+

P Z N

N+

N NPP

P+

Figure 8.3: The restricted scope graph, #�B , for contour codons

0

c

s

Figure 8.4: Non-zero points of curvature inflection

The first stage of the TOG construction process requires that C!CPD and C!CEF are prepared

with respect to #!B . This involves the conversion of triples into explicit-context form and

the removal of triples not consistent with #�B . Our choice of scope graph ensures that the

Chapter 8. Analysis of existing schemes 166

triples of C�C9D and C�C�F are all consistent with #!B . The triples of C!C6D are already in explicit-

context form, so we have C!C.D)%5#1B�+$¤µC!CED . The tokens of C�CEF do need to be converted,

but the conversion is straightforward because, for each triple, only one possibility exists

for its leading and trailing context atoms. The token ¬h` , for example, has an identity that

starts with �c_R�<` and ends with �da �ý_ . Consulting the scope graph, we can see that the

only allowable leading context is �'a and the only allowable trailing context is �3` . The

prepared set of C!C9F specifications is given in Table 8.3.

C!C F %5# B +Ó¤é� ¬A` ¤ �	�3a \@�ý_R�c` �ý_R�3a �ý_<]:�c` � (
¬ a ¤ �	� a \@� _ � ` � _ � a � _]:� ` � (
­4` ¤ �	�3a \@�ý_R�c` �ý_R�3a �daq�	a �'_<]:�R` � (
­^a ¤ �	��a \@�'_��R` �b`��c` �ý_R�3a �ý_<]:�c` � (
® ¤ �	��a \@�'_��R` �b`��c` �ý_R�3a �daq��a �
_<]:�R` �Â�

Table 8.3: The prepared specification of C!C F , with respect to # B

The second stage of the construction process involves the mapping of LFS tokens to

graph nodes, as detailed in Section 7.3.2. In that section, we noted that a token specification

consisting of a single triple only requires one node. Since each of our codon specifications

contain only one triple, node assignment is straightforward. The nodes assigned to the

tokens of C�C9D and C!C�F are listed in Table 8.4. Recall that each node has an associated

pair of sets,
¨
'(Z� © , where
 is a set of distinct starting substrings and � is a set of distinct

finishing substrings. For C�C6D , which is a no-merging LFS, the substrings are all of length

two; for C!CEF , which is a merging LFS, they are all of length three. Contour codons are

curve segments, rather than point features, so all of the nodes in the TOGs we construct

will be rectangular, rather than circular, in appearance.

The final stage of the construction process involves the determination of the node con-

nections in each graph. We will start with the TOG for C!CQD . First, consider strong con-

nections. A strong connection exists from r to r»n iff one of the finishing substrings of

r equals one of the starting substrings of r»n . Consulting the set of nodes
Û %5C!C.D)%5#1B�+o+

Chapter 8. Analysis of existing schemes 167

Û %5C�CED,%5#1B@+o+Ó¤Ì� rq�,% ¬A`�+Ë¤ ¨ �:�ý_��c` � (>�:�3a �ý_ � © (
rq�,% ¬7a
+Ë¤ ¨ �:�
_	�'` � (b�:�	a �'_ � © (
rq�,%I­4`�+Ë¤ ¨ �:�ý_��c` � (>�:��a �'_ � © (
rq�,%I­ a +Ë¤ ¨ �:� _ � ` � (b�:� a � _ � © (
rq�,% ®�+ ¤ ¨ �:� _ � ` � (b�:� a � _ � © �

Û %5C!C�Fo%5#1B@+o+Ó¤Ì� rq�,% ¬ ` +Ë¤ ¨ �:� a � _ � ` � (>�:� a � _ � ` � © (
r � % ¬7a
+Ë¤ ¨ �:�	a �
_R�R` � (>�:��a �'_R�R` � © (
r � %I­4`�+Ë¤ ¨ �:�ba �<_'�<` � (>�:��a �'_R�R` � © (
rq�,%I­^a
+Ë¤ ¨ �:�	a �
_R�R` � (>�:�3a �ý_R�c` � © (
rq�,% ®�+ ¤ ¨ �:�'` �
_R�R` � (>�:��a �'_R�R` � © �

Table 8.4: The nodes for TOG %5C�C6D)(*#1B@+ and TOG %5C!CEFG(*#8B�+

in Table 8.4, it is clear that there are no strong connections in the graph for C�C�D . A weak

connection exists whenever two triples may join together such that their identities are sep-

arated by a single non-identity atom, and no other triple fits between their identities. There

are several weak connections in the graph. As an example, here is how we determine the

existence of a weak connection from r«�)%I­ ` + to r°�,% ®�+ :

� r°�)%I­ ` + contains the single finishing substring
g ¤ Õý�ã¤¿� a � _ and r°�,% ®�+ contains

the single starting substring ø�¤ómQ�«¤ � _ � ` . We have �8¤óm , which means that the

identities of the triple(s) characterised by
g

and ø do join together such that they are

separated by a single non-identity atom (in this case �E_).

� The second condition requires that no triple fits between the identities of the triples

characterised by
g

and ø . We must check that the triple
¨ Õ)(Z�)(o� © (�Na \@�'_<]:�'`) does

not exist in any specification of C�C.D . It does not, therefore there is a weak connection

from r°�)%I­ ` + to r°�,% ®�+ .

We can carry out a similar analysis for the remaining twenty-four pairs of nodes, with

the result that, for each pair of nodes, it is known whether or not there exists a weak

Chapter 8. Analysis of existing schemes 168

connection. All we have left to do, then, is to determine whether any remote connections

exist in the graph. Here is how we determine whether a remote connection exists from

r % ¬A`�+ to r %I­^a
+ :

� From r % ¬A`�+ we get
g ¤ Õ<�s¤ �da �<_ and from rÈ%I­=a
+ we get ø�¤úmN� ¤ �R_R�R` . A

remote connection exists from r % ¬7`�+ to rÈ%I­=a
+ iff there exists an Ð such that the

string ��¤Û�3a �<_cÐ¦�'_R�R` is derivable from #!B , and no triple in any specification of

C�CED fits � .

� To see what the possibilities for Ð are, we need to consult #$B . Note that the second

atom of � corresponds to the leftmost � _ in #1B , because it is preceded by � a . Simi-

larly, the penultimate atom of � corresponds to the leftmost � _ in #8B . The string Ð ,

then, defines a path in #�B connecting the leftmost node for � _ to the leftmost node

for �'_ . Starting at the leftmost �>_ , the next node in the path must be �b` , the node

after that must be the rightmost �b_ , and the node after that must be �
a . At �3a we

can either return to the leftmost �b_ or we can go to �'a . If we go to �
a , then we reach

the leftmost �R_ via ��a . We have established, then, that Ð must either start with

�s¤ � ` � _ � a � _ or � n ¤ � ` � _ � a � a � a � _ .

� If Ð begins with � , then �ÿ¤ � a � _ � ` � _ � a � _ ô�ô�ô)� _ � ` , in which case the string

corresponding to the triple of ¬ ` , i.e., � _ � ` � _ � a � _ , fits � . If, on the other hand,

Ð begins with � n , then ��¤ç� a � _ � ` � _ � a � a � a � _ ô�ô�ô^� _ � ` , and the string corre-

sponding to the triple of ­)` , i.e., �<_R�<` �<_R�ba �daq��a �'_ , fits � . We have shown that

there does not exist an Ð such that no triple in any specification of C�CQD fits � . We

conclude, therefore, that there is no remote connection from r % ¬~`�+ to r %I­^a
+ .

Applying the same kind of argument to the remaining pairs of nodes, we find that the

graph contains no remote connections. Table 8.5 summarises the connection types that

exist between the nodes of TOG %5C!C.D,(*#8B�+ . The complete TOG constructed for C�C.D with

respect to #8B is given on the left of Figure 8.5. Using the TOG, we can determine the

Chapter 8. Analysis of existing schemes 169

syntax of the strings of the C�C6D LFS. We see that three of the nodes have loops, indicating

that three of the five codons may occur immediately adjacent to themselves (¬ ` , ¬ a , and ®).
The absence of any strong connections means that, given an atomic description of a curve

within the scope, not all of the atoms in the description will belong to the identity of a

codon. Specifically, the minimum points are considered distinct from the actual curve

segments represented by the codons. The absence of any remote connections means that,

for all curves within scope, all of the atoms of their atomic descriptions are accounted for

by either the identity or the context of a codon.

r � % ¬A`�+ r � % ¬7a
+ r � %I­4`R+ r � %I­^a
+ r � % ®�+
rq�,% ¬ ` + ù ù
rq�,% ¬7a
+ ù ù ù
rq�,%I­4`�+ ù ù ù
r � %I­^a
+ ù ù
rq�,% ®�+ ù ù ù
Table 8.5: The node connections for TOG %5C�C.D)(*#1B*+

The construction of the TOG for C!C6F closely mirrors the construction just described

for C!CED . The main difference being that certain triples within C!CQF may merge, because of

the difference in the way the codons are specified. Consequently, where we had a weak

connection in the TOG for C!C6D , we have a strong connection in the TOG for C!C.F . The TOG

for C�C�F is given on the right of Figure 8.5.

Full scope

The “full” scope is provided by the level-3 atomic TOG (Figure 4.5, p. 89), which we will

refer to as #8H ? . The TOGs for C�C D and C!C F are constructed in exactly the same manner

as before. Bearing in mind that #�B is essentially a subgraph of #�H ? , i.e., all the paths

through the former are present in the latter, and the fact that scope graphs do not need

to be consulted when determining strong or weak connections, C!CPD and C!CEF do not need

Chapter 8. Analysis of existing schemes 170

1+

0+

1

0

2

1+

0+

1

0

2

Figure 8.5: TOG %5C!C D (*# B + and TOG %5C!C F (*# B +

to be re-prepared (C!C6D,%5#1H ? +E¤ C�CED,%5#1B@+*(*C!C�Fo%5#1H ? +9¤ C�C�FI%5#1B@+ 3) and the configuration of

strong and weak connections will be the same as before. We need only concern ourselves,

therefore, with remote connections. A consequence of the additional atoms and, therefore,

path possibilities provided by #�H ? , is that the constructed TOGs for C!C D and C�C F contain

a large number of remote connections. In fact, each TOG is fully connected with respect

to remote connections, i.e., there exists a remote connection between every pair of nodes.

As an example, let’s consider again whether there is a remote connection from rÈ% ¬{`�+ to

r %I­ a + in the TOG for C�C9D , this time using #8H ? as the scope graph instead of #�B :

� A remote connection exists iff there exists an Ð such that ��¤ � a � _ Ð � _ � ` is deriv-

able from #8H ? , and no triple in any specification of C�C.D fits � .

� In #1H ? , � _ and � _ require only one node each, because non-zero points of curva-

ture inflection are allowed in #�H ? . We need to consider the valid paths that con-
3Strictly speaking, û�û ç should be re-prepared, because its leading and trailing contexts are implicit, and,

as non-zero points of curvature inflection are allowed in á�üGý , there are, in each case, two possible interval
atoms that can be assigned to the leading and trailing contexts of a triple. However, to preserve the essential
difference between the TOGs constructed for û�û-þ and û�û ç (weak versus strong connections) we choose, here,
to assert that û�û ç Fÿá ü4ý J contains the same specifications as û�û ç Fÿá��NJ .

Chapter 8. Analysis of existing schemes 171

nect � _ to � _ . One possible path is � _ É � a É � � É � ` É � _ , giving us

� ¤Û� a � _ � a � � � ` � _ � ` . There does not exist a triple in C�C.D that fits this string,

so we conclude that there does exist a remote connection from rÈ% ¬~`�+ to rÈ%I­^ad+ .

Although there are, in fact, an infinite number of different paths that imply a remote

connection from r % ¬ ` + to rÈ%I­ a + , we only need to find a single path in order to verify the

existence of a remote connection. We can construct an analogous value of Ð for any pair of

nodes in the graph, as follows. The associated � for a pair of nodes takes the form Õ<�<ÐÙmQ� .
Assign the string Õ
����� to Ð . The resultant � will be such that no triple in C!C D fits it. For

the pair
¨ r��)% ®�+*(Zrq�^% ¬7ad+ © , for example, we get �9a �'_R�	a � � �'` �'_R�R` . The TOGs for C�C9D

and C!CEF , constructed with respect to #�H ? , are given in Figure 8.6.

1+

0+

1

0

2

1+

0+

1

0

2

Figure 8.6: TOG %5C!C6D,(*#1H ? + and TOG %5C!CEFI(*#1H ? +

The number of remote connections that the TOGs now contain suggest that contour

codons are inadequate for representing certain curves that fall within the full scope of the

theory of atoms. Kink points, straight-line segments, and circular-arc segments, for exam-

ple, are not represented. Also not represented are the atomic curve features represented

Chapter 8. Analysis of existing schemes 172

by � _ , � � , � _ , � � , � _ , � � , and �dO . Shapes that contain such features can be described

using strings of codons (by simply ignoring atoms that have no representation under the

contour-codon scheme), but there will be a significant amount of information loss. In some

cases, the description of a shape in terms of codons may just be “ í ” (the empty string), e.g.,

every polygon has an empty description. This property of C�CQD and C!CEF is not to be con-

sidered a deficiency when the purpose of the schemes is taken into account. However, it

does highlight a lack of discriminatory power with respect to certain shapes that one might

want to represent.

8.1.3 The extended set of codons

Rosin (1993) provides a set of contour codons that includes Hoffman & Richards’ origi-

nal six (the five shown earlier, plus “ Ï ” for representing straight-line segments), together

with a large number of additions. The primary motivation for the expansion is to increase

the expressive power of codons, in order to meet a design criterion, given by Rosin, for

contour representations: “The representation should be adequately expressive so that suf-

ficient shapes can be represented by unique (i.e., distinguishing) descriptions” (p. 286). In

total, fifty-eight new codons are introduced, of which seven are required for representing

adjoining straight lines, twelve for representing open curves, seven for representing curves

containing no minima, and thirty-two for representing “semi-cusps”. Rosin’s scheme,

then, consists of sixty-four primitives in all. As pointed out in Section 2.3.1, circular-arc

segments are not represented and no distinction is made between cusps and angles; Rosin-

style cusps are formed by connecting together two semi-cusp codons. All of the codons in

the extended set can be specified as complex tokens using atoms at level 3 in the atomic

hierarchy (see Appendix C for a full list of the specifications). Figure 8.7 shows a selection

of codons from the extended set and the corresponding complex-token specifications.

The discriminatory power provided by Rosin’s extended set of codons is much greater

than that provided by Hoffman and Richards’ original set of codons. However, there are

still curve features not represented by Rosin’s scheme, so it cannot really be used as a

Chapter 8. Analysis of existing schemes 173

Î a ¤ �ã\Z� _ � ` � _ � a � a � a]:� _ � |hu ¤§��\Z� _ � a]�L �

��[�¤ÿ�ÀL�\@�3a �>_
��a]�L � Ý.t�¤ÿ�	�
�\@�R`]:�	�R(3�'�\@�'`]:� ! �
Figure 8.7: A selection of Rosin’s codons and their specifications

general scheme for describing shape in two dimensions. Interestingly, the twenty atoms at

level 3 in the atomic hierarchy (the derived atoms together with the four kink tokens) have

greater discriminatory power than the sixty-four primitives comprising the extended set

of contour codons.

8.2 Extremum primitives

Leyton’s scheme, which we looked at in Section 2.3.2, contains primitives representing

curvature extrema; his choice of primitives is motivated by the idea that process activity

explains the shape of certain natural forms. A different kind of deformational process is

associated with each of the four kinds of curvature extremum, as listed in Table 2.3. The

primitives Íq` and ��` are associated with protrusion and squashing processes respec-

tively, while Íãa and �!a are associated with internal resistance and indentation respec-

tively. The annotated curvature plot of Figure 8.8 shows the assignment of primitives to

curvature extrema.

In addition to the four primitives representing curvature extrema, Leyton includes a

fifth primitive, ¬ , representing points where the curvature is zero. Although Leyton does

not explicitly disallow stationary points of curvature that are not extrema, we make the

assumption that such points are not found on the curves ordinarily described by Leyton’s

primitives. In other words, we assume that rule 8.1 holds and that Leyton’s primitives

Chapter 8. Analysis of existing schemes 174

0 s

m
M

m

0
0

c
M

m

+

+

Figure 8.8: Curvature plot showing the primitives of Leyton’s scheme

are therefore designed to represent the same class of curves as the contour codons. When

constructing the TOG for Leyton’s scheme, then, we will use # B as the scope graph.

8.2.1 LFS specification

A curvature extremum corresponds to a stationary point of curvature within a particular

context. The “squashing” primitive (�!`), for example, represents a positive stationary

point (�<_) preceded by an interval of decreasing positive curvature (��a) and followed by

an interval of increasing positive curvature (�d`). The primitive �1` is therefore specified by

a single triple: � a \@� _]:� ` . There are two kinds of zero-curvature point, representing the

two possible ways in which the sign of curvature can change, i.e., from positive to negative

or vice versa. Consequently, whereas each extremum primitive requires only one triple in

its specification, the ¬ primitive requires two. The five primitives of Leyton’s scheme are

specified in Table 8.6.

The set ��J!2 is an LFS, because all of its tokens are MAMO, and there is no interference

between tokens. The extremum primitives are MAMO, since each primitive has an identity

consisting of a single atom (lemma 8.2). The ¬ primitive is also MAMO, because its triples

do not overlap and identity-equality is not possible. Tokens that represent extrema with

the same curvature sign have identical identities but, importantly, their contexts differ.

Such tokens, therefore, do not interfere when fitted to an atomic description.

Chapter 8. Analysis of existing schemes 175

�	J�2Ã¤é� Í$` ¤ �	�c` \@�<_<]:�ba � (
��` ¤ �	�3a \@�<_<]:�<` � (
Í�a ¤ �	�R` \@�'_<]:��a � (
� a ¤ �	� a \@� _]:� ` � (
¬ ¤ �	� a \Z� a]:� a (3� ` \Z� `]:� ` � �

Table 8.6: The token specifications for Leyton’s scheme

8.2.2 TOG construction

We will construct two TOGs for ��J!2 . The first will be constructed with respect to #qB , and

the second with respect to #�H ? (the level-3 atomic TOG, p. 89).

Restricted scope

The triples of ��J!2 are already in explicit-context form and consistent with #qB , so the

preparation stage is redundant. Only one node is required for each of the four extremum

primitives, because they each contain just a single triple. The ¬ primitive, however, re-

quires two nodes, because if both triples were associated with the same node then node-

connection transitivity could not be guaranteed. The triples of ¬ give rise to a set,
 , of

two distinct starting substrings and a set, � , of two distinct finishing substrings, as fol-

lows:
 ¤ �:�3a �daR(b�R` �>` � and � ¤ �^�da���a (ý�>`E�c` � . In order to ensure the presence of all

possible combinations of distinct starting and finishing substrings, the node would need

to be associated with at least ¸?��¸!¤b� triples. Since ¬ contains only two triples, this is not

possible. Consequently, two nodes are assigned to ¬ . The complete set of nodes required

for TOG %&�	J�2	(*# B + is given in Table 8.7.

Now we are in a position to connect the nodes of the graph together. There is no merg-

ing or meeting of any triples in �	J�2 , and so the graph doesn’t contain any strong connec-

tions. There are, however, a number of weak connections. For example, r��)%oÍ$`R+ weakly

connects to r��)% ¬�+ , because (i) the distinct finishing substring associated with r��)%oÍ$`R+ has

Chapter 8. Analysis of existing schemes 176

Û %&�	J!2«%5#1B@+o+�¤Ë� r°�4%oÍ$`R+Ë¤ ¨ �:�<` �<_ � (>�:�<_R�ba � © (
r°�4%G��`�+ ¤ ¨ �:�ba �<_ � (>�:�<_R�<` � © (
r°�4%oÍ�ad+Ë¤ ¨ �:�'` �
_ � (b�:�
_R��a � © (
r°�4%G� a + ¤ ¨ �:� a � _ � (b�:� _ � ` � © (
r°�4% ¬�+ ¤ ¨ �:� a � a � (>�^� a � a � © (
r�;=% ¬�+ ¤ ¨ �:� ` � ` � (b�^� ` � ` � © �

Table 8.7: The nodes for TOG %&��J!2�(*#!BK+

a trailing-context atom (�
a) that matches the leading-context atom of the distinct starting

substring associated with r«�4% ¬�+ , and (ii) the triple �>_R\@�ba]^�da does not exist in ��J!2 . The

graph does not contain any remote connections. Here, for example, is how we determine

that there is not a remote connection from r«�,%G� ` + to r°�,%oÍ a + :
� r � %G�P`R+ contains the distinct finishing substring �3_R�<` and r � %oÍ�ad+ contains the dis-

tinct starting substring �	` �'_ . A remote connection exists from r � %G�P`R+ to r � %oÍ�a3+ ,
then, iff there exists an Ð such that the string �¡¤Á�3_R�<` Ðç�R` �'_ is derivable from

#8B , and no triple in any specification of ��J!2 fits � .

� Consulting #8B , the minimal path from �>` to �R` is �c` É �ý_ É �3a É �da É ��a É
�'_ É �'` , giving Ð¼¤Á�<_'�ba �
a ��a �'_ and �¡¤Á�<_R�c` �<_'�ba �
a ��a �'_R�R` �
_ . Three

tokens fit to � in this case: Í°` , ¬ , and �!a . We need to show that at least one token

fits to all possible paths.

� Inspecting #8B , it is clear that any non-minimal path from �d` to �R` must start with

� ` É � _QÉ � a and end with � a É � _QÉ � ` , i.e., Ð must start with � _ � a and end

with � _ � ` . For every possible value of Ð , then, � ¤Â� _ � ` � _ � a ô�ô�ô,� a � _ � ` � _ .
The triples of Í ` and � a always fit such a string. We conclude, then, that there is no

remote connection from r � %G��`R+ to r � %oÍ�ad+ .

The connection information for �	J�2 is given in Table 8.8, and the corresponding TOG

in Figure 8.9. The nodes in the TOG are shown as circles, as each token represents a point

Chapter 8. Analysis of existing schemes 177

curve feature. We can see, as we would expect, that TOG %&�	J�2	(*#$B@+ encodes information

pertaining to the order in which curvature extrema can occur in a plot of curvature against

arc length. The 0 primitive is redundant, in the sense that its presence can be inferred from

the order of the extrema, e.g., given Íã` followed by �!a we know that, so long as the curve

being described is within scope, a point of zero curvature must be present in between the

two extrema.

r°�4%oÍ$`R+ r°�4%G��`�+ r°�)%oÍ�ad+ r°�)%G�8ad+ r°�4% ¬�+ r�;�% ¬�+
r°�)%oÍ$`'+ ù ù
r°�)%G� ` + ù
r°�)%oÍ a + ù
r°�)%G�8ad+ ù ù
r°�)% ¬�+ ù
r ; % ¬�+ ù

Table 8.8: The node connections for TOG %&��J!2�(*#�B@+

2

0

0

1

M+m+ Mm

Figure 8.9: TOG %&�	J!2�(*# B +

Full scope

The construction of the TOG for ��J!2 with respect to the level-3 atomic TOG (#$H ?) follows

the same pattern as when we considered the contour codons and full scope. There are

Chapter 8. Analysis of existing schemes 178

no strong connections, and the weak connections remain unchanged in the graph. The

graph is fully connected with remote connections, indicating, correctly, that the primitives

of �	J�2 are not capable of adequately representing the full scope of curves. The TOG

constructed for �	J!2 using #�H ? is given in Figure 8.10.

M+m+ Mm

2

1

0

0

Figure 8.10: TOG %&��J!2�(*#!H ? +

8.3 Curvature types

In Chapter 3, we covered “Qualitative outline theory” (QOT), which uses a set of seven

qualitative curvature types for describing outlines. In Appendix A, we provide a regular

grammar that generates all of the canonical strings of curvature-type symbols. In this

section, we show how each of the curvature types can be specified as a complex token and

that the seven curvature types collectively define an LFS. We then construct a TOG for the

curvature types with respect to the full scope of curves given by the level-2 atomic TOG,

comparing the constructed TOG with the grammar given in the appendix.

Chapter 8. Analysis of existing schemes 179

8.3.1 LFS specification

There are three linelike types (� , � , and �) and four pointlike types (� , à , á , and �). Our

aim is to specify each of the types as a complex token using atoms with as few qualitative

components as possible. First, consider the linelike types. The straight-line type, � , rep-

resents intervals of zero curvature; so � can be defined at level 2 and identified with all

occurrences of � . Convex curve segments, which are represented by � , correspond to seg-

ments of curve which do not contain any straight-line segments or concavities. In terms

of curvature variation, a convex curve segment is an interval over which curvature is non-

negative and, if the curvature is zero, it is zero only at an isolated point. In other words, a

convex curve segment does not simply correspond to intervals over which the curvature

is wholly positive (i.e., �); within the segment, there may be points where the curvature is

undefined (as when two circular-arc segments of positive curvature are smoothly joined,

such that the tangent bearing is defined at the join but the curvature is not) and there may

be points where the curvature momentarily takes the value zero (corresponding to the

kinds of minima disallowed by the schemes of Hoffman & Richards and Leyton). Such

point occurrences are illustrated in Figure 8.11 by a convex curve segment with the de-

scription � �
Ob� ��� . The type � , then, corresponds to strings of atoms that begin and end

with an interval of positive curvature (�) and contain zero or more points of undefined

curvature (�
O) and zero or more points of zero curvature (�). Segments of curve that are

concave, and represented by � , are analogous to convex curve segments in their atomic

composition, with occurrences of � replaced with � .

The four pointlike types can be specified at any level in the hierarchy. There are two

types for angles: outward-pointing (�) and inward-pointing (à). Similarly, there is a type

representing outward-pointing cusps (á) and another for representing inward-pointing

ones (�). All seven of the curvature types, then, can be specified using atoms at level 2 of

the atomic hierarchy. The set of specifications, L�0PM , is given in Table 8.9. All of the curva-

ture types, apart from the convex and concave curve-segment types, represent occurrences

of a single level-2 atom.

Chapter 8. Analysis of existing schemes 180

Uc

P

P

P

Z

c

s

Figure 8.11: An exemplar curvature plot of the � curvature type

L!0PM ¤é� � ¤ ��\@� %5� � Å �dOb� + K] � (
� ¤ ��\@� %5� � Å �3Ob� + K] � (
� ¤ ��\Z�] � (
� ¤ ��\@� �] � (
à ¤ ��\@� "] � (
á ¤ ��\@��!�] � (
� ¤ ��\@����] � �

Table 8.9: The token specifications for the curvature types of QOT

Now we need to check that L�0PM is indeed an LFS. Five of the seven tokens (� , � , à , á ,

and �) have identities that consist of single atoms, so they must all be MAMO (lemma 8.2).

The two remaining tokens, � and � , are also MAMO by virtue of the XKT:t)XKT:�QYKu predicate

holding whenever two triples may overlap. We will prove this for � :

Consider a valid alignment, ê , of two triples in � , k and k n , such that kN����� - e^V^Y=U5l �7m8k n
holds. The identity of k is � %5� � Å �'Ob� +GÑ , where ÔâÆ ¸ . The first � of the identity of k n
is aligned with one of the � s of the identity of k . Since kE����� - e^V^Y=U5l �:m�k n holds, the identity

of kGn must extend beyond the identity of k . The string of atoms that extends beyond the

identity of k is of the form %5�$� Å �'O3� + Ò , where Õ1Æ ´ . The valid alignment ê is illustrated

in Table 8.10, where � is used to denote an occurrence of � or ��O . For XKT:t)XKT:�QYKu<%£�,ê � (4�P+ to

Chapter 8. Analysis of existing schemes 181

hold, there must exist a triple in � whose identity is � %5� � Å ��Ob� +GÑ�%5�q� Å �3Ob� + Ò , which

simplifies to � %5�$� Å �
Ob� + g , where ��Æ¡½ . As this is clearly the case given the specification

of � , we conclude that XKT:t)XKT:�QYKu<%£�,ê � (4�P+ must hold and that, therefore, � is MAMO.
�

� %y��� +GÑÖ ×KØ Ù %y��� + ÒÖ ×@Ø Ù
k � � ô�ô�ô � ô�ô�ô � �
k n � ô�ô�ô � � ô�ô�ô � �

Ø ÙKÖ ×
� %y��� + g

Table 8.10: A valid alignment of kR�P�@� - e^V=Y=U5l �7m6kZn , where k�(okGn>pq�

We have verified that all of the tokens in L!0�M are MAMO. All that remains is to check

that no two tokens of L!0�M interfere. A prerequisite for two tokens, M and M n , to interfere

is that a triple relation holds between k9p«M and k n pãM n . However, if M contains only triples

with identities that consist of atoms taken from some set ê , and M!n contains only triples

with identities that consist of atoms taken from some set Z , then, if ê ^ Z ¤ba , none of the

thirteen triple relations can hold between k and k¢n , so M and MQn cannot interfere. Inspecting

the specifications of the tokens in L!0�M , using this heuristic, reveals that no two tokens

interfere. We conclude, therefore, that L�0PM is an LFS.

8.3.2 TOG construction

The set of curvature types is designed to be complete, in the sense that all of the curves

that fall within the scope of our theory have non-empty curvature-type descriptions. More

specifically, every point on a curve should form part of the identity, or constitute the entire

identity, of exactly one of the seven curvature types. When constructing the TOG, then, we

will use the level-2 atomic TOG as the scope graph (Figure 4.4, p. 88), which we will refer

to as #1H ; . Our expectation is that the constructed TOG for L!0�M will contain only strong

connections.

Chapter 8. Analysis of existing schemes 182

Preparation of L!0�M

All of the specifications in L!0�M have implicit leading and trailing contexts, so every to-

ken needs to be converted into explicit-context form. As an example, consider � , and the

conversion of \Z�] into a set, ê , of corresponding triples, with leading and trailing con-

texts of length one. The conversion is carried out using # H ; . Each path in #8H ; of the form

� É � É z yields an element, ��\Z�]4z , of ê . Recall that, during triple conversion, the scope

graph is assumed to contain two extra nodes for curve end-points (represented by “ L ”)

that are connected to all of the interval-atom nodes in the graph (see Section 7.3.1). The

specification for � , then, is converted into the following set of explicit-context triples:

�b��\Z�]4z è9�3(oz«p��:� (4� (4�	�R(4��"R(4� ! (4� � (4� O (NL �R�
All of the other tokens in L�0PM are converted in a similar manner. As well as triple con-

version, the preparation of an LFS involves a check to ensure that every triple is compatible

with the scope graph; #!H ; in this case. Clearly, the triples of L!0PM must be compatible with

#1H ; , because there cannot exist a valid string of level-2 atoms that is not derivable from the

level-2 atomic TOG. The prepared specification of L!0�M is given in Table 8.11.

L�0PM�%5#8H ; +�¤é� � ¤ �b� \@� %5� � Å �3Ob� + K]4z�èE�3(oz«p��^� (*�
(4� � (4� " (4��!R(4�#�R(4�dOK(NL �R� (
� ¤ �b� \@� %5� � Å �dOb� + K]4z è9�3(oz«p��^� (*�
(4� � (4� " (4��!'(4���R(4�3OK(NL �R� (
� ¤ �b� \Z�]4z�èE�3(oz«p��:� (4� (4� � (4� " (4�#!R(4���'(4�dO4(NL �R� (
� ¤ �b� \@� �]4z�èE�d(ozãp��:� (*� (4� �R� (
à ¤ �b� \@� "]4z�èE�d(ozãp��:� (*� (4� �R� (
á ¤ �b� \@�#!�]4z�è1%y�s¤ � �ãz«p��:� (*� (4� � +-
»%y��p»�:� (*� � �ãz$¤ � + � (
� ¤ �b� \@�#��]4z�è1%y�s¤ � ��z«pÓ�:� (*� (4� � +�
�%y�Óp��^� (4� � �ãz$¤ � + � �

Table 8.11: The prepared specification of L!0�M , with respect to # H ;

Note that our original specifications were not restricted to closed curves, so the linelike

types, each of which may both begin and end an open curve, include triples with the curve

end-point symbol as their leading and/or trailing context(s).

Chapter 8. Analysis of existing schemes 183

Determining the graph nodes

The set of curvature types closely resembles the set of level-2 atomic tokens, in the sense

that five of the curvature types are essentially aliases for level-2 atoms. In particular, � rep-

resents � , and the four kink tokens, � � , � " , ��! , and ��� are represented by � , à , á , and �
respectively. As we would expect, then, the number of nodes in the level-2 atomic TOG for

the aforementioned atoms reflects the number of nodes required by each of the five curva-

ture types in TOG %5L!0�MN(*#!H ; + . In particular, � , � , and à require one node each, whereas á
and � require two nodes each. As a reminder of the node creation procedure, consider the

assignment of nodes to á . First, the characterisation set for á is generated, by extracting

the starting and finishing substrings from each triple of the prepared specification of á :

á.g5i�¤§� ¨ � ��!'(4�#!q� © (¨ � �#!R(4��!�� © (¨ � �#!R(4��!q� © (¨ � ��!'(4�#!q� © (¨ � ��!'(4�#!q� © �
Next, á.gji is partitioned using Algorithm B.1, yielding two subsets, one of which con-

tains the first three elements of áPg5i (as listed) and the other of which contains the last two

elements. A node is then created for each of the subsets, as follows:

r°�)%IáQ+ ¤ ¨ �:� ��! � (>�:�#!q� (3��!!� (d�#!$� � ©
r ; %IáQ+ ¤ ¨ �:� � ! (ý� � ! � (>�:� ! � � ©

The two remaining curvature types, � and � , require one node each, bringing the

total number of nodes required by TOG %5L�0PMN(*#�H ; + to nine. The complete set of nodes is

given in Table 8.12. In the constructed graph, the nodes for the linelike types are shown as

rectangles, and those for the pointlike types as circles.

Connecting the nodes

As expected, there are a number of strong connections in the constructed TOG. L!0PM is a

no-merging LFS, so all of the strong connections are of the meeting kind. As an example,

consider the strong connections that exist from rs�,%5�A+ to the other nodes in the graph. The

node r°�)%5�A+ is associated with the following set, � , of distinct finishing substrings:

Chapter 8. Analysis of existing schemes 184

Û %5L!0PM %5#8+o+»¤Ë� r°�,%I�Q+Ë¤ ¨ �^� � (<��� (b�dOb� (d� � � (b� " � (3�#!$� (3�#�q� (]LQ� � (
�:� � (3� �
(b� �3OK(d� � � (b� � " (3� ��!'(3� ���R(b� L � © (

r°�,%I�Q+Ë¤ ¨ �^� � (ý� � (3�3Ob� (3� � � (b� " � (b��!$� (3���$� (]LQ� � (
�:� � (b� �d(3� �3OK(3� � � (3� � " (b� ��!
(3� ���R(b� L � © (

r°�,%5�A+ ¤ ¨ �:� � (3� � (b�dO<� (3� � � (b� " � (b��!�� (b���!� (�LE� � (
�^� � (<� � (c� �3OK(<� � � (<� � " (ý� �#!R(ý� ���
(c� L � © (

r°�,%I�Q+Ë¤ ¨ �:� � � (c� � � (3� � � � (b�:� � � (b� � � (b� � � � © (
r � %IàQ+Ë¤ ¨ �:� �	"
(c� ��"R(3� �	" � (b�:��"q� (b��"�� (b�	"q� � © (
r � %IáQ+Ë¤ ¨ �:� � ! � (b�:� ! � (b� ! � (b� ! � � © (
r�;A%IáQ+Ë¤ ¨ �:� ��!
(c� �#! � (>�:��!q� � © (
r°�,%I�Q+Ë¤ ¨ �:� ��� � (b�:�#�q� (3�#��� (3���$� � © (
r�;A%I�Q+Ë¤ ¨ �^� �#�R(b� ��� � (>�:���q� � © �
Table 8.12: The nodes for TOG %5L�0PMN(*#�H ; +

�§¤§�
� � (ý� � (c� �3OK(ý� � � (<� � " (c� �#!R(<� ���R(ý� L �
There is a strong connection from rã�)%5�A+ to node Ð iff at least one of the substrings in �

is contained in the set of distinct starting substrings,
En , associated with Ð . For Ð¿¤ r ; %IáQ+ ,
we have
'nE¤¿�:� � ! (ý� � ! � . The element � � ! of

n is shared by � , so r � %5�A+ ÞÉ r ; %IáQ+
exists. The six strong connections in TOG %5L!0�MN(*#�H ; + that originate from rã�4%5�A+ are listed

in Table 8.13. Altogether there are thirty strong connections in the graph and, as expected,

there are no strong connections between any of the nodes representing pointlike types.

Interestingly, there are no strong connections between the nodes for � and � either, as we

expected there to be. Instead, the nodes for � and � are linked by two connections of the

weak kind. Consider the determination of a weak connection from r��)%I�P+ to r°�4%I�P+ . The

set of distinct finishing substrings of r � %I�Q+ contains the two substrings
g � ¤ Õ � � � ¤ç� � O

and
g ;8¤ Õ�;<�@;!¤ç� � , and the set of distinct starting substrings of rs�)%I�Q+ contains the two

substrings ø,n � ¤ mb�{�¶�E¤ �dOb� and ø,n; ¤1m<;c�A;N¤ ��� . Taking
g � and ø,n � first, we have �^�E¤ m3� ,

so triples characterised by
g � and ø,n � can be joined together such that their identities are

Chapter 8. Analysis of existing schemes 185

Connection
g ps�ÿ¤ ø n p�
 n

r°�,%5�A+òÞÉ r°�)%I�Q+ � �
r°�,%5�A+òÞÉ r°�)%I�Q+ � �
r°�,%5�A+òÞÉ r°�)%I�Q+ � � �
r°�,%5�A+òÞÉ r°�)%IàQ+ � � "
r°�,%5�A+òÞÉ r�;�%IáQ+ � �#!
r°�,%5�A+òÞÉ r�;�%I�Q+ � �#�

Table 8.13: The strong connections originating from r��4%5�A+ in TOG %5L!0�MN(*#8H ; +

separated by the single atom �'O . The triple � \@�
Oh]:� , however, does not exist in L!0�M ,

which means that there does exist a weak connection from r��,%I�Q+ to r°�)%I�Q+ . In addition

to
g � and ø n � , the substrings

g ; and ø n ; also imply r��,%I�Q+
ß
É rq�)%I�Q+ . There exist analogous

substrings in the set of distinct starting substrings of rs�,%I�Q+ and the set of distinct finishing

substrings of r � %I�Q+ that imply a weak connection in the other direction: r � %I�Q+
ß
É r � %I�Q+ .

There are four other weak connections in the graph, involving the node for � . The six weak

connections of TOG %5L�0PMN(*#!H ; + are detailed in Table 8.14.

Connection
g ps� ø n p�
 n Triple not in L!0�M

´ rq�,%5�A+
ß
É rq�,%I�Q+ � �3O �dOb� � \@�3O~]:�

¸ rq�,%5�A+
ß
É rq�,%I�Q+ � �3O �dOb� � \@�3O~]:�

½ rq�,%I�Q+
ß
É rq�)%5�A+ � �dO �dOý� � \@�dO~]^�� rq�,%I�Q+
ß
É rq�)%I�Q+ � �dO �dOb� � \@�dO~]:�

� � � � � \Z�P]:�
² rq�,%I�Q+

ß
É rq�)%5�A+ � �3O �dOý� � \@�dOh]^�

· rq�,%I�Q+
ß
É rq�)%I�Q+ � �3O �dOb� � \@�dOh]:�

� � � � � \Z�P]:�

Table 8.14: The six weak connections in TOG %5L!0�MN(*#�H ; +

Chapter 8. Analysis of existing schemes 186

All that remains is to show that there are no remote connections in TOG %5L�0PMN(*#qH ; + .
There are 81 potential remote connections that need to be checked.4 As an illustrative

example of how these could be checked, we will prove that no remote connection exists

from r ; %IáQ+R¤ ¨
'(Z� © to r � %IàQ+R¤ ¨

n&(Z�1n © :
We have � ¤ �:��!q� � and
'n�¤ �:� � " (<� � " (b� � " � . Therefore, there are three sets

of strings that are relevant to the existence of r°;A%IáQ+ ôÉ rq�)%IàQ+ : ��¤ ��!$� Ðç� � " , � ¤
��!$� Ð�n4� � " , and ��¤ ��! � Ð�n nA� � " . We will consider each set of strings in turn:

� �»¤ ��!q� Ð � � "
The substring Ð cannot be of length zero, because � É � does not exist in #$H ; .
Every Ð of length greater than zero must begin with an atom taken from the set

ê ¤Ë�^� (*�
(4� � (4� " (4��!'(4���'(4�3O � . Therefore, � must be of the form �:!q� Ôeô�ô�ô^� � " ,

where Ô»pÈê . Every triple of the form �:!q\@�],Ô is an element of the specification of

� . Therefore, � fits to all of the strings given by � .

� �»¤ � ! � Ð�n4� ��"
The substring ÐÓn can be empty, because � É � exists in #�H ; . In which case, the

triples ���q\@�]^� (from �) and � \Z�]:� " (from �) fit � . Apart from this difference, we

may use the same reasoning as for the strings given by � to conclude that � fits to all

of the strings given by � .

� ��¤ ��! � Ð n n � � "
The same reasoning applies here as for the set of paths given by � , with “ � ” replaced

by “ � ”, and “ � ” by “ � ”.

For each of the three sets of paths, we have shown that at least one token fits to every

path in the set. We may therefore conclude that r°;A%IáQ+ ôÉ rq�)%IàQ+ does not exist.

An enumeration of the connections in TOG %5L!0�MN(*#�H ; + is provided in Table 8.15; the

graph itself is given in Figure 8.12.

4Note that we can prove that no remote connections exist in TOG F���î��-IHá ü ð J using a high-level argument
similar to that given for TOG F|éëê#ì�E�I�á�EiJ , on page 152.

Chapter 8. Analysis of existing schemes 187

r°�)%5�A+ rq�)%I�Q+ r°�)%I�Q+ r°�,%I�Q+ rq�,%IàQ+ r°�,%IáQ+ r�;A%IáQ+ r°�4%I�P+ r�;A%I�Q+
r � %5�A+
#ù
#ù

r°�4%I�P+
#ù ù

r°�4%I�P+
#ù ù

r°�4%I�P+

r°�4%IàP+

r°�4%IáP+

r�;=%IáP+

r°�4%I�P+

r�;=%I�P+

Table 8.15: The node connections for TOG %5L!0�MN(*#�H ; +

2

1

2

1

Figure 8.12: TOG %5L�0PMN(*#!H ; +

Chapter 8. Analysis of existing schemes 188

The absence of any remote connections in TOG %5L�0PMN(*# H ; + , together with the large

number of strong connections compared with weak connections, suggests that L!0�M ad-

equately represents the scope of curves defined by #�H ; . Since #8H ; corresponds to “full”

scope, L�0PM may be regarded as a general scheme, because it is capable of representing

a wide range of curves. This is not surprising, because the set of curvature types pro-

vided by QOT is very similar to the set of atoms and kink tokens provided at level 2 of

the atomic hierarchy. This similarity is reflected by the fact that TOG %5L!0�MN(*#$H ; + bears a

strong resemblance to #�H ; (p. 88).

The presence of weak connections in TOG %5L!0PMQ(*#�H ; + suggests some kind of weakness

or deficiency in L!0PM . Closer inspection of Table 8.14 reveals that there are two level-2

atoms that are not fully accounted for by the tokens of L�0PM : � O and � . In our discussion

of QOT in Chapter 3, we noted that a separate curvature type for a point of inflection is

not necessary, as its presence can be inferred from adjacent occurrences of � and � . The

decision to omit points of inflection accounts for weak connections � and · in the table.

There are two kinds of curve-inflection points, those where the curvature smoothly passes

through zero (�), and those where the tangent bearing is defined but the curvature is not

(�dO). The latter kind is illustrated by the section of curve shown on the right of Figure 8.13,

formed by joining together two circular-arc segments.5

P

cU Z

cU

N

P

Figure 8.13: Occurrences of �'O not accounted for by L!0�M

The remaining four weak connections are due to unrepresented occurrences of �EO be-
5Note that, for a ��� inflection, the adjoining segments of curve need not be circular arcs. The segments just

need to join together such that the tangent bearing is defined at the join, but the curvature is not.

Chapter 8. Analysis of existing schemes 189

tween a straight-line segment and an interval of positive or negative curvature. An in-

stance of such a point, preceded by an interval of positive curvature and followed by a

straight-line segment (weak connection 3), is shown on the left of Figure 8.13.

The existence of weak connections in a non-atomic TOG signify that, when the tokens

of the underlying LFS are fitted to an atomic description, there may be atoms that are not

accounted for, i.e., atoms which do not form part of the identity of any fitted triple. It is

important to note that the points left unaccounted for by QOT are not points that may

be regarded as perceptually salient. For this reason, their omission may be considered

acceptable, and need not be seen as a deficiency. The weak connections could be removed,

if necessary, by introducing one or more extra curvature types into the QOT scheme. One

possibility is to include a curve-inflection type,
§ �)' , together with a type representing � O s

that occur between straight-line segments and intervals of positive or negative curvature

(which we refer to here as ÝE+ 6, giving us “ L!0�M©� ”:§ �)'Ì¤ �	� \@� O]:� (3� \Z�P]:� (b� \@� O]:� (b� \Z�Q]:� �
Ý ¤ �
� \@� O]:� (<� \@� O]:� (b� \@� O]^� (d� \@� O]^� �

The ordering constraints encoded by TOG %5L�0PMN(*#�H ; + are consistent with those given

in Section 3.2.4. The constructed TOG relates to the grammar given in Appendix A in the

following way: the set of strings that can be generated from the TOG by starting at r��)%I�Q+
and tracing a route that ends at a node other than rs�,%I�Q+ , is the same as the set of strings

generated by the first two rules of the grammar, together with the block of rules of the

form ê
	 É � and ù É � .

8.4 Summary

In this chapter, we have analysed the three qualitative boundary-based schemes from

Chapters 2 and 3, and shown that each one of them is an LFS. The specifications of the

complex tokens for each scheme was shown to be straightforward; no contexts of length
6The author has been unsuccessful in finding a succinct label for such points, providing evidence, perhaps,

that points of type � are fairly esoteric and can be left unspecified.

Chapter 8. Analysis of existing schemes 190

greater than one atom were needed by any of the tokens, in keeping with the restriction

given in Section 7.1.1.

The range of curves adequately described by the schemes was compared by construct-

ing TOGs with respect to particular scope graphs. For the contour codons and extremum

primitives, we constructed TOGs with respect to the full scope of curves (given by the

level-3 atomic TOG) and found that the graphs were fully connected with remote connec-

tions, indicating inadequate descriptive power with respect to the full scope of curves. In

particular, polygonal shapes and curves with points of undefined tangent bearing and/or

curvature cannot be adequately described using contour codons or extremum primitives.

We also constructed TOGs for the contour codons and extremum primitives with respect to

a restricted scope graph, representing the class of curves implied by the author’s of the two

schemes. The resultant TOGs, in this case, contained no remote connections, indicating the

suitability of the scope graph for both schemes. For the curvature types, we constructed a

TOG with respect to the full scope of curves given by the level-2 atomic TOG. The absence

of any remote connections in the constructed graph, in this case, indicating that the set of

curvature types can adequately represent a wider range of curves than either the set of

contour codons or the set of extremum primitives.

One interesting difference between the schemes is given by information loss. Any de-

scription of a curve in terms of contour codons or extremum primitives can be translated

into a single atomic description at level 3, i.e., each codon and extremum primitive cor-

responds to a finite fixed string of atoms. This is not the case with the curvature types.

The two curve-segment types correspond to an infinite number of atomic strings, so their

presence in a string of curvature types does not correspond to a single string of atoms.

In this sense, a curvature-type description loses information about the underlying atomic

description of a curve. However, this is exactly the property which provides the set of

curvature types with the capability to adequately represent a wide range of curves, while

still consisting of a small and manageable number of primitives.

Chapter 9

Evaluation

In this chapter, we evaluate the theory of boundary-based shape representation developed in Chap-

ters 4 to 7 of this thesis: qualitative boundary theory. The theory essentially consists of three parts.

Here, we discuss the strengths and weaknesses of each part of the theory in turn.

9.1 Summary of qualitative boundary theory

In Chapters 4 to 7 of this thesis, we have developed a theory of the boundary-based ap-

proach to the qualitative representation of two-dimensional shape, which we call quali-

tative boundary theory (QBT). In the previous chapter, we applied QBT by showing how

existing boundary-based schemes are ultimately specifiable in terms of the basic shape

descriptors provided by QBT. The basic building blocks of the theory, together with the

support the theory provides for the specification of higher-level curve features, consti-

tute a framework in which boundary-based representations of shape, such as the various

schemes we have looked at, can be formally specified. QBT consists of three parts:

� The atomic shape descriptors

We began, in Chapter 4, by deriving an unbounded hierarchy of atomic tokens based

on combinations of qualitative components. Our components included tangent bear-

ing and its successive derivatives with respect to arc length, i.e., curvature, the rate

191

Chapter 9. Evaluation 192

of change of curvature, etc. These atomic tokens are the basic building blocks for

representing the boundary of shapes and form the foundation of the theory. Shape

features that are not expressible in terms of atomic tokens cannot be represented by

any scheme derived from the theory.

� Support for higher-level curve description

In Chapter 5, we began by showing that there are curve features which we would

like to represent that do not correspond to single atomic tokens, such as curvature

maxima and minima, for example. We developed a means by which strings of atomic

tokens can be grouped together to represent higher-level curve features. These “com-

plex” tokens utilise the notions of identity and context. A curve feature may have one

or a (possibly infinite) number of atomic identities and each of its identities is associ-

ated with a set of contexts. Complex tokens do not increase the discriminatory power

provided by the atomic tokens, rather, their purpose is to associate single labels with

non-atomic curve features, i.e., they enable us to explicitly represent localised curve

features of greater abstraction.

Our concern in Chapter 6 was to consider how complex tokens can be collected to-

gether to form a boundary-based scheme for representing shape. We interpreted a

single coherent scheme as one that represents a shape by a string of tokens, such that

the features represented by the tokens do not overlap round the boundary of a shape.

We defined a local-feature scheme (LFS) as one that meets this criterion. In Chapter 8,

we were able to highlight the underlying similarities of existing boundary-based

schemes, by showing that each is specifiable as an LFS.

� Token-ordering graphs

In Chapter 4, token-ordering graphs (TOGs) were introduced, in the context of the

atomic tokens. A TOG visually encodes the ordering constraints for a set of atomic

or complex tokens. Nodes in a TOG are associated with tokens and directed edges

with ordering constraints between tokens. A procedure is provided in Appendix B

Chapter 9. Evaluation 193

for constructing a TOG for a set of atoms at a given level of the atomic hierarchy. In

Chapter 7, we focussed our attention on the problem of constructing a TOG for a set

of complex tokens defining an LFS. Such non-atomic TOGs make explicit the ordering

constraints implicit in the token specifications contained in an LFS.

In the sections that follow, we focus on each part of the theory in turn, highlighting its

strengths and weaknesses, and relating it to work from the literature.

9.2 The atomic shape descriptors

9.2.1 Design

The basic units provided by the theory for representing shapes are atomic tokens. Each

atomic token (or atom) is identified with a sequence of qualitative components representing

a partial curve state. The first value in a sequence represents tangent bearing (Õ), the second

curvature (�), the third the rate of change of curvature (�)n), and so on. We use two simple

quantity spaces as our sets of allowable qualitative values. For tangent bearing, we choose

only to distinguish between points where it is defined (ñ) and points where it is not (ð),

so we use the space �,ñ�(@ð � . Points where the tangent bearing is undefined correspond to

curve features referred to as kinks. For all of the successive derivatives of tangent bearing

(� , ��n , . . .), we use the space � Å (Ê (4¾1(@ð � , so we can distinguish between positive, zero,

negative, and undefined values of a derivative. Our choice of quantity spaces ensures that

atomic descriptions are invariant with respect to translation, rotation, and uniform scaling

transformations. The hierarchy of atomic tokens is generated by considering only those

sequences of qualitative components that are valid (see Section 4.1.1) and is unbounded

because there is no limit imposed on the length of a sequence of qualitative components.

Although we combine qualitative components with a view to deriving descriptors for

representing shape that characterise the tangent-bearing function1, the analysis of qual-

itative components given in Chapter 4 provides a general technique for the qualitative
1Also known as the � - o curve (Ballard & Brown 1982).

Chapter 9. Evaluation 194

representation of real-valued variables and their derivatives (linear functions). We will

have more to say on this in the next chapter, when we highlight possible directions for

further work (Section 10.3).

Completeness

By starting with tangent bearing and using quantity spaces for tangent bearing and its

successive derivatives, such that there is a qualitative value for every possible underlying

numeric value of each component, the set of atoms at each level of the hierarchy is complete,

in the sense that an atomic description of a curve (at any level of the hierarchy) accounts

for all of the points on the curve, i.e., every point is associated with exactly one atom of

the description. The completeness of the sets of basic shape descriptors, with respect to

a fairly general scope of curves, is more comprehensive than that provided by any of the

existing boundary-based schemes we have looked at.

A consequence of completeness is the existence of atoms that are not perceptually

salient. The atom �
O , for example, which exists at every level in the hierarchy, represents

points where the tangent bearing is defined but the curvature is not. A � O is not a point

that can easily be identified on a curve by just inspecting the appearance of the curve.

The number of point atoms that contain at least one undefined component increases as we

move down the hierarchy, e.g., at level 2 there is just one (�	O) whereas at level 3 there are

four (�
O , � � , � � , and � �). Although required for completeness, the existence of such atoms

can, in fact, complicate the specification of curve features. Evidence for this is provided by

the specifications of the curve-segment types of QOT (see Section 8.3.1).

Scope of curves represented

As a consequence of attending solely to the way in which tangent bearing changes locally

along the bounding curve of a shape, the class of shapes that can be adequately repre-

sented by atomic tokens is restricted. To ensure that atomic descriptions are finite, we

need to restrict our attention to piecewise uniform curves, as we did for QOT in Chapter 3.

Chapter 9. Evaluation 195

We do not need to restrict ourselves to curves that are closed, however. As with QOT,

it makes sense to disregard self-intersecting curves, because points of self-intersection are

not taken into account by QBT. The problems that arise when describing curves containing

crossing or “touching” points can be highlighted with reference to the three digits shown

in Figure 9.1.

Figure 9.1: Curves that contain crossing and touching points

The first digit, “6”, contains a touching point and the second digit, “4”, contains a

crossing point. It would be incorrect to say that these curves cannot be represented, but

in any atomic description the touching and crossing points themselves are not represented.

The third digit, “8”, differs from the first two in that it is a closed curve. An additional

problem arises in this case with respect to the assignment of figure and ground. If fig-

ure is interpreted as the two regions enclosed by the curve, then the relationship between

the direction of curve traversal and the side of the curve that the figure lies to is compro-

mised. To adequately represent such critical points (Freeman 1978), our theory needs to be

extended in some way.

Kink tokens

At every level of the hierarchy there exists just a single atom representing kink points,

labelled ��� . Inward- and outward-pointing kinks, therefore, are not distinguishable. As

a consequence, the discriminatory power of the derived atoms is limited for shapes that

have tangent discontinuities. We could have chosen to use a different quantity space for

tangent bearing. Instead of �,ñ�(@ð � , we could have used �,ñ�(@ð ` (@ð a � , with the value ð `

Chapter 9. Evaluation 196

indicating an outward-pointing kink and ð a an inward-pointing one; or vice versa. In the

analysis of Hayes & Leyton (1989), all kinks are formed at extrema of curvature and are

essentially interpreted as maxima and minima of curvature that go to infinity. Their spike

parity of a kink reflects the sign of the infinite value. For Hayes and Leyton, undefined

curvature presupposes undefined tangent bearing. In our theory, we make the distinction

between a point where both the tangent bearing and the curvature are undefined and a

point where the curvature is undefined but the tangent bearing is defined. If we did use

the extended quantity space �,ñ�(@ð ` (@ð a � then, although the orientation of a kink point

would be known, we would still have no way of determining its type, i.e., whether it is

an angle or a cusp. For Hayes & Leyton (1989) this is not so important, since they do not

readily distinguish between angles and cusps; instead, they consider only the orientation

of a kink. Rather than use an extended quantity space, we chose to introduce a set of four

kink tokens separately (Section 4.1.5). The fact that our analysis of qualitative components

does not yield all of the desirable building blocks could be considered a weakness in our

approach. Although the kink tokens are not atomic in the sense that they are not derived

in the same way as the other atoms, they may be regarded as non-derived atoms, because

they effectively replace ��� at every level of the atomic hierarchy.

9.2.2 Discriminatory power

Recall that discriminatory power relates to the capability that a set of shape descriptors has

for distinguishing between two given shapes. Each level of the atomic hierarchy provides

a complete set of descriptors for representing a shape. The first level, consisting as it does

only of w and the four kink tokens, provides the least amount of discriminatory power.

Even so, level 1 is still capable of a certain amount of useful discrimination, e.g., polygons

that differ as to the number of sides and angle types have different level-1 descriptions.

If we are interested solely in the number and type of tangent discontinuities that a shape

has, then descriptions at level 1 would suffice. In the second level of the hierarchy the

expansive interval w , from the first level, yields five atoms that are capable, collectively, of

Chapter 9. Evaluation 197

describing the different kinds of “ w ” intervals. At level 2, the extra component associated

with each atom provides a qualitative value for curvature, so that a segment of curve can

be classified as straight, convex, or concave. As we move further down the atomic hierar-

chy, the number of qualitative components increases and, therefore, so does the available

discriminatory power. We learnt in the previous chapter that we only need to go as far

as level 3 to specify the primitives of existing boundary-based schemes. This does not

mean to say that atoms with more than three components are not useful, rather, it reflects

the design criteria of the schemes we have looked at. Representations that are used for

shape recognition tasks using image data may sensibly restrict themselves to the first three

components of the curve state, because it is difficult to extract derivatives of a higher order.

An important characteristic of the hierarchy of atoms is that it provides discrimina-

tory power of a certain kind. Given two different shapes, they may be indistinguishable

regardless of the level at which one decides to describe them. A simple example is that

two different four-sided convex polygons cannot be distinguished, e.g., a square cannot

be distinguished from a rhombus. Also, certain kinds of individual shapes cannot be ade-

quately described at any level of the hierarchy, such as the shape given in the last section of

Chapter 3. The kind of discriminatory power provided by the atoms may be considered a

limitation, serving to indicate that the atomic shape descriptors are unsuitable for certain

kinds of tasks that require shape in two dimensions to be represented. There are two main

reasons why atomic descriptions are inadequate in certain circumstances:

� Atoms represent curve features that are localised

Each atom in a description is associated with a single point or an interval of points

on the bounding curve of some shape. An atomic description represents a string of

localised curve features that “join together” to form an open or closed curve. Infor-

mation that might be regarded as global, or concerning the whole region enclosed

by the boundary (in the case of a closed curve), such as symmetry or some measure

of elongation, is lost in an atomic description. We cannot distinguish, for example,

between ellipses that have different radii. Interestingly, the global property of con-

Chapter 9. Evaluation 198

vexity can be determined from a description, because it requires only knowledge of

curvature sign and the distinction between inward- and outward-pointing kinks.

� Atoms are associated with sequences of components that are non-numeric

The atomic shape descriptors are based on quantity spaces and designed to be qual-

itative in nature. For this reason, purely quantitative differences between shapes are

not represented at all. In particular, the length of arc associated with any given in-

terval atom is information not encoded by a description, and therefore “lost”. Note,

however, that it is not strictly correct to claim that all components have non-numeric,

qualitative values. The qualitative value “ Ê ”, rather than representing a range of val-

ues (as Å and ¾ do), represents a single value. The presence of Ê and ð in the quantity

space used for derivatives of tangent bearing accounts for the concept of “absolute”

qualitative precision that we encountered in Section 4.2.1. The availability of Ê also

accounts for the fact that a circle is the only shape precisely described by an atomic

description (� �<_).

9.2.3 Computability

One question that naturally arises concerns the computability of our atomic descriptions.

Where do atomic descriptions come from? In the next chapter, we will consider the appli-

cability of the atomic tokens as shape descriptors. One likely candidate for an application

of QBT is high-level computer vision: the recognition of objects based on the boundaries

of their silhouettes. If we consider raw image data to be the source of our atomic de-

scriptions, then it would seem that only the initial levels of the hierarchy contain atoms

that may be reliably extracted. Atoms with more than three components, because of noise

and the amount of data available, cannot be feasibly identified. As well as the number of

derivatives being an issue, identifying kink points is not straightforward, and distinguish-

ing between angles and cusps is even more problematic. Although there are significant

problems associated with the extraction of atomic descriptions from image data, they are

Chapter 9. Evaluation 199

not of primary concern to us here. Importantly, we can easily generate atomic descriptions

at any level of the hierarchy, since the rules for string syntax are provided by the atomic

TOGS. In other words, we do not need image data to process descriptions that contain

atoms with greater than three components.

9.3 Support for higher-level curve description

Atomic tokens are not, in themselves, adequate for representing all kinds of local curve

features. We demonstrated this at the beginning of Chapter 5 by considering a couple of

example curve features and showing that single atoms were not capable of representing

them (Section 5.1). By “higher-level” curve descriptions we mean strings of non-atomic to-

kens. The purpose of representing higher-level (more abstract) curve features is to have

more meaningful descriptions that make important qualitative aspects of a shape explicit.

Support for higher-level descriptions is provided in Chapter 5 in the form of a model,

based on the notions of identity and context, that allows curve features of greater abstrac-

tion to be specified as complex tokens. Further support is then provided in Chapter 6, in

the form of the definition of an LFS (Section 6.3). An LFS is a constrained set of complex

tokens that supports the description of shapes by strings of tokens, ensuring that no two

represented features on the bounding curve of a shape overlap.

9.3.1 Model for abstract curve features

Through examples, it was established that there are two important aspects of an abstract

curve feature that need to be modelled in order to represent it. The first aspect is the

identities of the feature and is given by the curve segments and/or points that the feature

corresponds to. An identity is represented by a string of atoms. The second important

aspect of an abstract curve feature is the contexts in which the identities of the feature can

exist. A context is split into two parts, a leading part and a trailing part. Each part is also

represented by a string of atoms. An abstract curve feature is modelled by a complex token,

Chapter 9. Evaluation 200

whose specification consists of a (possibly infinite) set of triples, each of which includes

an identity string and related leading and trailing context strings. A complex token is

identified by a label that is used to symbolise its presence in a description.

The model proposed has been used successfully, in the previous chapter, to specify the

primitives of existing boundary-based schemes from the literature. In fact, we have not en-

countered a localised curve feature in a qualitative boundary-based scheme that cannot be

specified using identities and contexts. In specifying primitives as complex tokens, we can

define their essential characteristics in a formal manner, leading to a greater understanding

of the precise meaning of a primitive. In the case of the contour codons, we were able to

highlight an ambiguity regarding the status of bounding minima (Section 8.1.1). Such an

ambiguity would need to be taken into account by a shape system containing knowledge

of the contour codons.

Feature space

A complex token represents a localised curve feature. The set of all complex tokens, there-

fore, defines the space of curve features that can be represented by QBT. Within this space,

only a small number of curve features have been specified in this thesis. Some features

have simple finite specifications, e.g., curvature extrema, whilst others require specifica-

tions that contain an infinite number of triples, such as the curve-segment curvature types

of QOT. A consequence of the lack of constraints imposed on the definition of a complex

token is that “meaningless” curve features can be specified just as easily as useful ones.

Although we have considered the classification of complex tokens and made reference to

the notion of curve-feature hierarchies (see Section 5.3), we have not provided any system-

atic method of specifying curve features that are necessarily “non-meaningless”.2 A closer

examination of feature space may uncover such a method or, perhaps, yield additional

constraints that there is good reason to impose on the definition of a complex token.
2One difficulty, of course, is that one person’s meaningless feature may be another’s meaningful feature.

Chapter 9. Evaluation 201

9.3.2 Token-string description

In Chapter 5 we covered the process of token fitting, by which triples from the specifica-

tions of complex tokens are associated with substrings of an atomic description. A ring

diagram shows the result of fitting a set of complex tokens to a particular atomic descrip-

tion. The examples of token fitting we gave in Section 5.4 highlighted the difficulties that

can arise in mapping a ring diagram to an unambiguous token-string description. Recall

that a token-string description is a string of labels representing curve features; no addi-

tional symbols are allowed in a string to encode the relative placement of the features (see

Section 5.4.3). The existing boundary-based schemes we looked at in Chapters 2 and 3 all

represent a shape by token-string descriptions. In Leyton’s scheme, for example, there is a

symbol attributed to each of the four kinds of curvature extrema, together with a symbol

representing points of zero curvature. A shape is described by a string consisting only of

these symbols. The order of the symbols in a string correspond to the order of the extrema

and points of zero curvature round the boundary of the shape described by the string.

In Chapter 6, we focussed our attention on sets of complex tokens and the problem of

ensuring that a set of complex tokens, when fitted to an atomic description, necessarily

yields a ring diagram that unambiguously maps to a string of complex tokens. Our anal-

ysis of the positional configurations of fitted triples concluded that non-redundant fitted

triples should be allowed to merge, meet, or be disjoint. From the analysis, constraints on

individual complex tokens and pairs of complex tokens were defined, leading to the defi-

nition of an LFS (Section 6.3). In the previous chapter, we showed that each of the existing

qualitative boundary-based schemes is an LFS.

When two non-redundant fitted triples of an LFS merge together, their identities over-

lap by a single atom, i.e., a single point or interval atom is shared by both identities. The two

possibilities are shown by the curve segments in Figure 9.2. On the left of the figure, two of

Hoffman and Richards’ contour codons, ¬ a and ´ a , as specified in C�CEF (see Section 8.1.1),

are shown fitted to a curve segment. The dots identify points of minimum curvature. Re-

call that, in C!C F , the minima that bound each codon are included in the identity of each

Chapter 9. Evaluation 202

token specification, i.e., ¬ a ¤���\@� _ � ` � _ � a � _] � and ­ a ¤ �ã\@� _ � ` � ` � ` � _ � a � _] � .
We see that, for the segment of curve shown, ¬ a merges with ­ a , such that the point atom

�'_ is shared by both curve features. We can think of the features, then, as being connected

at point � on the curve. The segment of curve on the right of Figure 9.2 gives an example of

a merging involving interval atoms. The two tokens of /�01��23? , � and à , are shown fitted

to a polygonal curve segment. Recall that � is specified as ��\Z� � � �] � and à as ��\Z� � " �] � .
We see that � merges with à , such that a single straight line (labelled z) separates the ver-

tices of � and à . On this occasion, because the atom being shared is an interval, there is no

single point connecting the two curve features, rather, both features share a single interval,

i.e., we do not have a definite point of separation.

0

1

<

>

y

x

Figure 9.2: The sharing of identity atoms: points versus intervals

We have chosen, in this thesis, to focus our attention on the representation of shape us-

ing token-strings. We have not looked at other, more sophisticated descriptive techniques,

where a shape is represented using some structure that is richer than a simple linear se-

quence of atomic or complex tokens. We will return to the issue of a richer representational

structure in Section 10.3 of the next chapter, as part of our consideration of extensions to

QBT. Currently, there is no provision for incorporating additional information of a quan-

titative nature into the description of a shape. This can be considered a limitation as it

restricts the applicability of QBT. A capability for including quantitative information may

allow the specification of the kinds of domain-specific vocabularies of high-level shape

descriptors advocated by Saund (1992). Rather than representing a shape (of some object)

using a general set of building-block primitives designed to correspond to part structure

Chapter 9. Evaluation 203

(such as the contour codons or Biederman’s geons), Saund takes the view that shape de-

scriptors should be “tuned to the structural regularities and constraints of specific shape

domains” (p. 75). Saund’s high-level shape descriptors represent constellations of “shape

tokens”3. A shape is described by a Scale-Space Blackboard holding shape tokens localised

in position, orientation, and scale.

9.4 Token-ordering graphs

9.4.1 Expressive power

A set of tokens provides an alphabet of symbols for representing shapes using string de-

scriptions. We identified two kinds of constraints associated with a set of tokens: ordering

constraints and closure constraints (Section 3.2.4). The ordering constraints define the basic

syntax for token-string descriptions. Any description that adheres to the ordering con-

straints is realisable as a section of curve (an open curve or part of an open curve4). If a

description adheres to the closure constraints as well, then it is also realisable as a closed

curve. In QOT, for example, the alphabet is �:�8(4�1(*�7(4�1(4à1(4á1(4� � , and the ordering and

closure constraints, given in Section 3.2.4, tell us that the description á»�6��� is realisable

as a section of curve and a closed curve.

A token-ordering graph (TOG) visually encodes the ordering constraints that exist for

a particular set of tokens. A TOG may be interpreted as a grammar that generates syntac-

tically valid token-string descriptions. In Section 8.3.2, we drew a comparison between the

TOG constructed for L�0PM and the full QOT grammar given in Appendix A, noting that

the essential differences between the two are accounted for by the closure constraints not

being encoded by the TOG. Specifically, the TOG constructed for L�0PM , when interpreted

as a grammar, generates strings that are not generated by the grammar in the appendix,
3A shape token “marks the occurrence in [an] image of a shape fragment (e.g. corner, edge, blob), or some

configuration of such fragments” (Saund 1992, p. 74).
4In Section 4.3.4, we stipulated that open curves begin and end with interval atoms, so a description that is

syntactically valid may not be realisable as a whole open curve.

Chapter 9. Evaluation 204

because a TOG is unable to encode any closure constraints that may be required by a set

of tokens.

A TOG, consisting as it does of a finite number of nodes and directed edges, is essen-

tially equivalent to a finite automaton (FA). The two graphs constructed for the contour

codons with respect to restricted scope, for example (Figure 8.5, p. 170), are both equiv-

alent to the finite-state machine shown in Figure 9.3. Nodes map to states and directed

edges to state transitions. A node in a TOG associated with token M maps to a state,
 ,
in the machine, such that every state transition to
 is labelled M . All of the states in the

machine are accepting states, apart from
�� (not shown in Figure 9.3), which is designated

the start state. Transitions exist in the machine from
�� to each of the other states. Note

that information pertaining to the strength of node connections is lost in the conversion

of a TOG to its equivalent FA. This explains why the TOGs constructed for C!C�D and C!C�F
are equivalent to the same machine. An alternative finite-state machine for Hoffman and

Richards’ contour codons, which computes codon descriptions from sequences of curva-

ture extrema, is given by Richards et al. (1988, Figure 11).

q1

q
2

q
3

5q

q4

0+1+

1+ 1
0

0+

1
0

10

2

2

2

¬ ` ­ ` ­ a ¬ a ®

=�
=�
4; ¾ ¾ ¾

4; ¾ ¾
4?
 �
 Á
4?
=�
4; ¾ ¾ ¾

 � ¾ ¾
4?
 �
 Á
 Á ¾ ¾
4?
 �
 Á

Figure 9.3: The finite-state machine equivalent to TOG %5C!C D (*# B + and TOG %5C�C F (*# B +

Chapter 9. Evaluation 205

Just as, for a given regular language, there will be, in general, more than one FA that

accepts it, so there will be, in general, more than one TOG capable of encoding the order-

ing constraints for a set of tokens. The construction algorithm for atomic TOGs, given in

Appendix B, generates graphs that are both deterministic5 and minimal (in terms of the

number of nodes and the number of connections). The algorithm we provide in Chap-

ter 7, for constructing non-atomic TOGs, does not ensure minimality (in terms of nodes or

connections), although it does result in a graph that is deterministic.

9.4.2 Construction

The construction of TOGs for sets of atomic tokens is relatively straightforward and is cov-

ered in Appendix B. In Chapter 4, we derived the TOGs for levels 2 and 3 of the atomic

hierarchy. Constructing non-atomic TOGs for sets of complex tokens is much less straight-

forward, because a complex token is specified by a (possibly infinite) set of string triples.

In Chapter 7, we presented a solution to the construction problem for sets of complex to-

kens defining restricted LFSs. A restricted LFS contains only complex tokens whose triples

have leading and trailing contexts of at most one atom in length. Our solution specifies

three stages of construction: LFS preparation, node determination, and connection deter-

mination. In dealing only with restricted LFSs, we are able to adopt a strategy whereby the

nodes in a graph are determined by considering each complex token in isolation, which

simplifies the construction process. A side-effect of the strategy is that the set of graph

nodes is not guaranteed to be minimal. Although our solution to the construction of a

non-atomic TOG only admits complex tokens whose contexts are significantly restricted,

we have still been able to construct TOGs for every LFS of interest, including, of course,

the TOGs for the existing boundary-based schemes. This provides additional evidence,

perhaps, that our definition of a complex token is under-constrained.

In a TOG, a node r is connected to a node r»n if the curve feature associated with r»n
may follow the curve feature associated with r , without a curve feature associated with

5The meaning of “deterministic” in this context is explained in Section B.1.

Chapter 9. Evaluation 206

any other node necessarily occurring in between. The construction procedure of Chapter 7

introduces the notion of connection strength, resulting in three connection types: strong,

weak, and remote. A strong connection exists if feature identities may merge or meet,

a weak connection exists if feature identities may be separated by a single atom, and a

remote connection exists if feature identities may be separated by more than one atom.

The connection types are not mutually exclusive, i.e., more than one type of connection

may hold between two given nodes. Note that, in an atomic TOG, all of the connections

are drawn as solid lines and are thus strong connections and consistent with the notion

of connection strength. By utilising different kinds of connections, a non-atomic TOG is

capable of visually reflecting the descriptive power of a set of complex tokens with respect

to a particular scope of curves. This property was found to be useful in Chapter 8, as part of

our analysis of the relative discriminatory power of existing boundary-based schemes. We

were able to highlight, for example, a subtle deficiency in the set of L!0PM complex tokens:

we expected every connection in the TOG constructed for L�0PM to be of the strong variety,

but the graph actually contains six weak connections. The reason why weak connections

exist in the TOG is that certain occurrences of the atoms � and �	O are not accounted for by

any of the curvature types of QOT.

Chapter 10

Conclusions and further work

In this final chapter we reflect on the work as a whole and then present the main contributions made

by it. We finish by highlighting some potential paths for future research.

10.1 Reflections on the work as a whole

This thesis has been concerned with the qualitative representation of shape. In Chapter 1,

we discussed the difficulties associated with the general representation of shape, conclud-

ing that the development of a single all-encompassing representational scheme is not feasi-

ble. We chose to restrict our attention to the qualitative representation of two-dimensional

shape, in the context of AI. There are two basic approaches to the qualitative representa-

tion of two-dimensional shape: region-based description and boundary-based description.

The central claim of the thesis was first stated in Section 1.2, and is as follows:

An analysis of qualitative curvature variation, based on tangent bearing, provides an

adequate theoretical underpinning for the boundary-based approach to the qualitative

representation of two-dimensional shape, leading to a theory which (i) provides a uni-

fying account of, and (ii) generalises, existing qualitative boundary-based schemes.

In Chapters 2 and 3 we looked at a number of existing region-based and boundary-

based schemes, to indicate the essential differences between the two approaches, and to

207

Chapter 10. Conclusions and further work 208

show that existing boundary-based schemes differ with respect to rationale and the set

of primitives provided. Hoffman and Richards’ contour codons, for example, were de-

signed for a theory regarding the perception of figure-ground reversal, Leyton’s primi-

tives result from the association of process activity with curvature extrema, and Galton

and Meathrel’s curvature types were designed as a minimal set of high-level descriptors

for characterising shape. After reviewing existing schemes, we developed our general the-

ory of the boundary-based approach to the qualitative representation of two-dimensional

shape: qualitative boundary theory (QBT). The theory was developed in a stepwise fashion

in Chapters 4 to 7. First, we derived an unbounded hierarchy of basic shape descriptors

from an analysis of qualitative curvature variation, and introduced token-ordering graphs

(TOGs) and an algorithm for their construction for sets of basic descriptors (Chapter 4);

next, we formulated a model for complex tokens capable of specifying abstract localised

curve features (Chapter 5); in Chapter 6 we identified the constraints on a set of complex

tokens to ensure that token-string description is not compromised, which led to the defi-

nition of a local-feature scheme (LFS); finally, in Chapter 7 we provided an algorithm for

constructing TOGs for a restricted class of LFSs. As detailed in Section 9.1, QBT consists of

three parts: the basic shape descriptors, support for higher-level curve description, and a

theory of TOGs.

Support for thesis claim

QBT is shown to provide a unifying account of existing boundary-based schemes by the

analyses provided in Chapter 8, where each of the boundary-based schemes of Chapters 2

and 3 is specified as an LFS and its primitives, therefore, as complex tokens. The account

given is a unifying one in the sense that each of the existing schemes is shown to be ulti-

mately specifiable in terms of atomic tokens.

It is clearly the case that QBT also generalises existing qualitative boundary-based

schemes. The unbounded hierarchy of atomic tokens, together with the model provided

for representing more complex curve features, essentially define a space of representable

Chapter 10. Conclusions and further work 209

primitives. This space, in turn, defines a space of LFSs, in which are located the boundary-

based schemes whose primitives are the contour codons, extremum primitives, and cur-

vature types. QBT, then, is a general theory that supports the specification of application-

specific boundary-based schemes.

We conclude that the thesis claim is strongly supported by the general theory devel-

oped in Chapters 4 to 7 and the analysis of existing boundary-based schemes carried out

in Chapter 8.

Limitations of QBT

In the previous chapter, we highlighted the strengths and weaknesses of each of the three

parts of QBT. The main limitations of QBT relate to discriminatory power and scope.

Atomic tokens represent localised curve features and are associated with sequences of non-

numeric components (see Section 9.2.2). In addition, there is no provision for the inclusion

of quantitative information. This has an effect on the kinds of applications that boundary-

based schemes derived from QBT can be used for. The scope of curves that can be ade-

quately represented by QBT also affects the applicability of the derivable boundary-based

schemes. Curves that contain “touching” or self-intersection points are not accounted for

by QBT (see Section 9.2.1), therefore certain applications, such as handwriting recognition

and diagrammatic reasoning, which are likely to require such points to be represented, are

not very well supported by the theory. We pick up on these limitations in the section on

further work at the end of the chapter.

Despite these limitations, we have demonstrated that, within its own terms, QBT is a

powerful and expressive theory.

The framework provided by QBT, in which qualitative boundary-based schemes can

be formally specified, contrasts with that proposed by Clementini & Felice (1997), in the

domain of geographical information systems (GIS). The emphasis of Clementini & Felice’s

framework for qualitative shape description is on global properties of shape, whereas our

emphasis has been on localised shape properties.

Chapter 10. Conclusions and further work 210

10.2 Main contributions

The work presented in this thesis makes the following contributions:

� Qualitative analysis of boundary-based differential curve structure

We derived our hierarchy of atomic shape descriptors by using qualitative values for

tangent bearing and its successive derivatives. A consideration of “qualitative cal-

culus” based on these values yielded a small number of simple rules, by which sets

of atomic tokens containing the same number of qualitative components are speci-

fiable. This leads directly to the unbounded hierarchy, each level of which provides

a complete set of atomic tokens with a certain level-specifc degree of discriminatory

power. A curve has a description at each level of the hierarchy. Higher-numbered

levels, those that incorporate a greater number of qualitative components, provide

greater discriminatory power than lower-numbered levels. The hierarchy provides

new boundary-based building blocks that are not tied to any particular domain of

application and which may be used, as has been shown in this thesis, to specify the

primitives of representational schemes for shape that are application-specific.

� A model for specifying abstract localised curve features

It was recognised, in Chapter 5, that many interesting curve features cannot be rep-

resented by single atomic tokens. For this reason, we developed a model of complex

tokens capable of specifying non-atomic localised curve features. The model is based

on the notions of identity and context – two properties of a curve-feature instance

that were shown to be necessary components of any adequate model of higher-level

features. The model provided, and its notation, is intuitive, which is reflected by the

succinct nature of the specifications for the majority of features that we have consid-

ered, e.g., a positive maximum of curvature is simply �	�
` \@�ý_<]:�3a � . Even the small

number of specifications we encountered that contained infinitely many triples could

be simply written, using appropriate regular expressions.

Chapter 10. Conclusions and further work 211

� Unifying account of existing boundary-based schemes

In Chapter 8, we analysed the boundary-based schemes from Chapters 2 and 3. We

showed how the primitives of each scheme can be specified as complex tokens, and

that each scheme is an LFS. Our unifying account yielded a number of results. In

specifying the contour codons as complex tokens, we found that we needed to ad-

dress an ambiguity regarding the inclusion or otherwise of bounding minima within

the identity of each codon. We constructed TOGs for each scheme, which showed

that the scope of curves adequately represented by the contour codons is the same

as that represented by the extremum primitives. The TOG constructed for QOT re-

vealed that certain points on a curve are not accounted for by the set of qualitative

curvature types. The same graph, when compared with the TOGs constructed for

the contour codons and extremum primitives, with respect to full scope, showed that

QOT is capable of adequately representing a much wider range of shapes than either

of the other two schemes, although for certain curves the other schemes can make

discriminations that cannot be made by QOT. The common tradeoff between scope

and detail, therefore, is highlighted by our analysis.

� The specification of graphs that encode token-ordering constraints

A set of atomic or complex tokens provides an explicit alphabet over which an im-

plicit language of shape descriptions exists. Such a language is subject to ordering

and closure constraints. We have developed a graph notation for visually encoding

the ordering constraints for a set of tokens, where nodes represent tokens and di-

rected edges the ordering constraints between them. In Appendix B we provided

a procedure for constructing graphs for sets of atomic tokens, and in Chapter 7 a

procedure for constructing graphs for sets of complex tokens. Atomic TOGs are im-

portant for the specification of complex tokens, because they are used to verify that

triples contain strings of atomic tokens that are syntactically valid. In our analysis of

existing schemes, we demonstrated that non-atomic TOGs are useful in comparing

the discriminatory power of different schemes, with respect to specific scopes.

Chapter 10. Conclusions and further work 212

10.3 Directions for further work

We finish the chapter by highlighting some directions for further work based on QBT.

Further analysis of boundary-based curve features

The set of triples that may constitute the specification of a complex token is not constrained

to any great extent (we have just a single condition to ensure that there are no redundant

triples in the set). Our main objective was to provide a model general enough to enable

all of the localised curve features we have encountered to be specified. This was achieved,

with the side-effect that almost all legal specifications represent curve features in only a

contrived technical sense, i.e., most “curve features” don’t resemble meaningful features

at all. The structure of feature space was only briefly touched upon. In Section 5.3.3, we

showed how to determine subtype relationships between curve features represented by

complex tokens, using set-theoretic operations. For example, a positive maximum of cur-

vature is a kind of curvature stationary point, because the single triple specifying the former

is a member of the set of triples specifying the latter.

A more detailed analysis of boundary-based curve features may yield additional con-

straints on the definition of a complex token, and a greater understanding of the structure

of feature space. In turn, it may be possible for useful curve features to be specified system-

atically. One example of this would be a query-based system, in which a user enters criteria

that characterise a class of curve features, resulting in the system automatically generating

the appropriate specifications. In order to retrieve Hoffman and Richards’ contour codons,

for example, we would request all curve segments that are bounded by curvature minima

but which do not contain any curvature minima.1

1Note that we are inadvertently implying here that the “correct” specification of the contour codons is
given by û�ûQþ (of Section 8.1.1).

Chapter 10. Conclusions and further work 213

Increasing the scope of shapes that can be represented

Although the scope of QBT includes a wide range of shapes (in the form of open and closed

curves of a reasonably general type) we pointed out in Section 9.2.1 that certain curve

points are not well handled by the theory. In particular, touching and crossing points are

not represented in any way. Applications that require such points to be represented are

currently poorly supported by QBT, and any extension that includes an adequate repre-

sentation of these points is therefore desirable.

A natural question to pose, given a general theory for describing two-dimensional

shape, is whether or not it can be used, in some (possibly modified) form, for representing

three-dimensional shape. The nature of QBT is such that an adequate transition to three

dimensions does not seem possible. The theory relies on the fact that a boundary of a two-

dimensional shape is one-dimensional and can therefore be described using a linear string

of symbols. In three dimensions this is not possible. There is no obvious analogue of an

atomic curve feature in three dimensions2, so it is not easy to see how the theory can be

applied to three-dimensional shape.

Increasing discriminatory power

There are a number of ways to increase the discriminatory power of QBT. By improving

QBT’s capability for distinguishing shapes, a wider range of applications would be sup-

ported by the theory. An indication of the possibilities available for increasing discrimina-

tory power is given by the following extensions:

� Inclusion of additional qualitative information

More information of a qualitative kind could be associated with atomic tokens. Some

of the possibilities for this were described in the context of QOT, in Section 3.4. The

set of kink tokens could be enlarged to encompass the distinction between acute,

right-angled, and obtuse angles, for example. The relative length, orientation, and
2Although a selection of three-dimensional QOT primitives have been suggested by Galton (2000).

Chapter 10. Conclusions and further work 214

position of curve features represented by atomic tokens could also be incorporated in

a qualitative fashion. One possibility would be to encode the additional information

using predicates such as l eh�,[�Y=U - ���^�7� , X¢�7�QY - l Y=�,[A��� , ehm:m�e=X@� �GY , SKehl�l����)Y4�=U , etc.

� Inclusion of quantitative information

Descriptions could be augmented with more precise information of a numerical kind.

This can be done at different levels, e.g., ratios could be used (thereby preserving the

property of invariance with respect to uniform scaling), feature-specific quantitative

shape measures could be included, and exact values could be specified, for angle

size, segment length, etc. Applications concerned with the generation of shapes, in

particular, are likely to require the inclusion of quantitative information.

� Integration with the region-based approach

As suggested by Richards & Hoffman (1987, footnote 1), it may be desirable to repre-

sent a shape with a description that consists of boundary-based information, together

with region-based information associated with one of the axis-based analyses. The

region-based part of the description, with its radius function and elementary de-

scriptors, such as “worm” and “flare”, would serve as the quantitative model of the

shape, and the boundary-based part as the related qualitative model. The exact way

in which the two parts would be related, however, is unclear. Richards & Hoffman

hypothesise a mapping via “a suitable list of indexed parameters”.

Note that most of the extensions listed here affect the kind of structures used for shape

descriptions, i.e., simple token-string descriptions are not likely to suffice.

Determination of closure constraints

In Chapter 3, we provided the simple closure constraint for descriptions consisting of the

curvature-type primitives of QOT, although the correctness of the constraint has yet to be

formally proven. Knowledge of the closure constraints for a set of tokens enables us to

verify that a given description is instantiable as a closed curve. We have not addressed

Chapter 10. Conclusions and further work 215

the problem of deriving the closure constraints for a set of atomic or complex tokens. The

similarity between the set of QOT primitives and the atomic tokens at level 2 of the atomic

hierarchy suggests that the closure constraints for the level-2 atoms may be as easily speci-

fied as the closure constraints for QOT. However, it is not clear what the closure constraints

are for any of the other levels in the hierarchy, or what general rules are required to derive

the necessary constraints for a given level. An interesting observation is that the closure

constraints for QOT are such that they can be built into a grammar for generating outlines

that is regular. It is not clear whether the closure constraints for each level in the hierarchy

can also be encoded in a regular grammar or whether, instead, a non-regular grammar is

required in the general case.

Incorporating QBT into a larger system

We have seen how QBT can be used to analyse existing boundary-based schemes and

to formally specify abstract localised curve features. A logical next step is to consider

building a spatial reasoning or high-level vision system which includes some or all of the

theory of boundary-based representation of shape developed in this thesis.

Our development of QBT did not include a discussion of the multi-scale representation

of shapes using atomic descriptions. This is an obvious next step to consider, especially

if our interest is in the building of a high-level vision system. A multi-scale representa-

tion, similar to that provided by Rosin (1993) for contour codons, would allow the atomic

features representing noise or the unimportant finer details of a shape to be distinguished

from the more significant features that characterise a shape (and therefore disregarded if

necessary).

Re-application of developed techniques

Finally, QBT is founded on a particular discretisation of tangent bearing and its successive

derivatives. Essentially, we have been dealing with the representation of a single real-

valued variable over time, where the variable is tangent bearing and the arc length of a

Chapter 10. Conclusions and further work 216

curve is analogous to time. Therefore, QBT may actually be re-interpreted as a theory of

the qualitative representation of a variable as it changes over time. It is possible, then, that

the techniques and formalisms developed in this thesis can be usefully re-applied in an area

other than the representation of two-dimensional shape. One such area of application,

for example, might be the description of the “profiles” of different processes (“temporal

shape”).

Appendix A

QOT material

A regular grammar is derived that generates valid strings for the full set of outlines, including all

of the canonical ones. We explain why a grammar that generates all and only the canonical strings

cannot be regular. This appendix also contains an enumeration of the valid curvature-type subsets

and a procedure for constructing subset-specific grammars.

A.1 A grammar for the full set of outlines

Here we provide a regular grammar that generates all of the canonical string descriptions

and also other valid descriptions that are not canonical. In the next section we explain

why a grammar that generates all and only the canonical descriptions cannot be regular.

As a first step to constructing the grammar, we observe that the full set of outlines can be

partitioned into three subsets:

1. outlines containing at least one � ,

2. outlines that do not contain a � , but contain at least one � , and

3. outlines that do not contain any instances of � or � , i.e., polygonal outlines.

The grammar is constructed in three parts. Each part generates the canonical strings

(and certain other non-canonical strings) for one of the three subsets. The complete set of

217

Appendix A. QOT material 218

grammar rules is given in Table A.1 (where “ í ” denotes the empty string).

Firstly, consider the valid strings that describe the outlines of subset 1. Every canonical

string must begin with � and, apart from the description consisting of a single � , end with

a symbol distinct from � . This constraint is enforced by the organisation of the grammar

rules. A string is generated by successively adding symbols according to the ordering

constraints given in Section 3.2.4. Note that, because each string begins with a convex

curve segment, the closure constraint is automatically satisfied by the initial symbol in the

string. The first block of rules in the grammar (those of the form ê�	 É � and ù É �),

together with the first two starting rules (
 É � and
 É �Àê ë), generate all of the valid

strings beginning with � .

Next, consider the valid strings that describe the outlines of subset 2. Every canonical

string must begin with � and contain at least three convex points. As before, the ordering

constraints are enforced by the organisation of the grammar rules. However, this time we

must ensure closure by “remembering” when a convex point is added to the string, and

not allowing a string to be terminated until it contains three such points. This is achieved

by having “cascading” blocks of rules; where each block ensures that a convex point of

some kind is added and then “passes control” to the next block. The second block of rules

in the grammar (Z 	 É � through to J�	 É �), together with the starting rule
 É � Z�� ,

generate all of the valid strings that begin with � and which do not contain any convex

curve segments.

Lastly, we need to consider the valid strings that describe the polygonal outlines of

subset 3. Once again, to ensure that each string contains at least three outward-pointing

angles, we require a cascading mechanism. The last block of rules in the grammar, to-

gether with the starting rule
 É �^� ì , generate the valid strings representing the polygo-

nal outline-types.

Appendix A. QOT material 219

A.1.1 Generating only the canonical strings

Here we show that a grammar that generates all and only the canonical strings for the full

set of outlines must necessarily be non-regular. Consider the set of polygonal outlines

that contain exactly two inward-pointing vertices that are not adjacent. Let
�

be the set of

canonical strings describing such outlines. Let ê and Z denote the subsequences ��� and

�Qà , respectively. Each string in
�

is of the form ê�� Z ê�� Z , where � Å zÈÆ ½ (for closure)

and, to ensure that the string is canonical, �ÓÆ�z . In other words, when generating a string

in
�

we must ensure that the longest sequence of outward-pointing vertices is encoded at

the beginning of the string. An application of the pumping lemma shows that a regular

grammar that generates all strings of the form ê �¡Z ê ��Z , that adhere to the constraints

� Å z«Æ¡½ and �ÓÆ�z , also generates at least one string of the same form, but where � is less

than z . Such strings are not canonical. We conclude, therefore, that a grammar capable of

generating all and only the canonical strings cannot be regular.

Appendix A. QOT material 220

� � �����! #"$�#%'&�($��)+*-,
 " �). /,0�#%' (�#1324�#5324�#6' #7$�#832
 (� �' " �9): /,0��1'24��5'24��6'2;��8! �<=��>
 /, � �' " �#%' (�#1?2@�#5?2@�#6' #7=��8! �<=��> #7 � %' (
 #< � �' "2 � �' " �9): /,0��%? (�A>
& (�)+&B,0��1DCE��5?&GF=��6DC&B, � %'&G(=�#1!CE�#5'& F �#6?& 7& F �)+&B,0��%!&G(
& 7 � %3HI(C �)JH�,B��%'HI(
HK(�)JH�,B��1?LM�#53H F �#6?LH�, � %3H (��1?LM�#53HKF$�#6'HK7
HKF �)JH�,B��%'H (
HK7 � %'N (L �)+NO,B�#%?N (
N (�)+NO,B�#13PQ�#5'NRFS�#6TP
NU, � %'N (�01TPQ�#5'NVF=�#6'NV7NVF �)+NO,B�#%?N (
NV7 � %'W (P �)+WI,0�#%'W0(=��>
W0(�)+WI,0�#1TPX��53PQ�#63P
WI, � %'W0($�#1TPX��53PQ�#6?W 7 ��>W 7 � %'W0(
*-, � 1'*ZY=�#5'* F*[F �)+*-,
* Y �)+\�,\�, � 1'\ Y ��5?\
F
\
F �)+\�,
\ Y �)+]O,]U, � 1'] Y ��5!]RF
]VF �)+]O,
] Y �)+^_,0��>^_, � 1']RY=��5!]RY

Table A.1: A regular grammar for the full set of outlines

Appendix A. QOT material 221

A.2 Valid curvature-type subsets

A subset of the seven qualitative curvature types is valid iff :

� the set contains at least one symbol taken from �:�8(4�1(*� � ,

� if � is not present, then at least one of �:�1(4á � must be present,

� if the set contains á then it must also contain � , and

� if the set contains � then it must also contain � .

The 62 valid curvature-type subsets are listed in Table A.2.

A.2.1 Procedure for subgrammar construction

Given a valid curvature-type subset,
 , a subgrammar can be derived from the full gram-

mar that generates valid strings representing the outline types denoted by
 . We construct

a grammar for
 by selecting the appropriate subset of the rules comprising the full gram-

mar, as follows:

1. If ��p�
 then select
 É � ,
 É �Àê�ë , and all rules of the form ` 	 É ��a and

`O	 É í , where ` p��,ê!(2ù � and ��(o� p�
 .

2. If ��pÓ
 and
 ^ �:�1(4á � *¤ba then select
 É � Z�� and all rules of the form `V	 É ��a
and `O	 É í , where ` p�� Z (*CP(Zñ�(ZJq(oÐ�(Z2	(Ab � and �	(o�Èp�
 .

3. If �7(4��pÓ
 then select
 É �^� ì and all rules of the form `�	 É ��a and `U	 É í ,

where ` p��,�6(*#�(Zî�(Zï � and �	(o�¥pÓ
 .

Appendix A. QOT material 222

1-element set 4-element sets 5-element sets
�:� � �:�1(4�1(*�7(4� � �:�1(4�1(*�7(4�1(4à �

�:�1(4�1(*�7(4à � �:�1(4�1(*�7(4�1(4á �
2-element sets �:�1(4�8(*�7(4á � �:�8(4�1(*�7(4�1(4� �
�:�1(4� � �:�1(4�1(*�7(4� � �:�1(4�1(*�7(4à1(4á �
�:�1(*� � �:�1(4�1(4�1(4à � �:�1(4�1(*�7(4à1(4� �
�:�1(4� � �:�1(4�1(4�1(4á � �:�1(4�1(*�7(4á1(4� �
�:�1(4à � �:�1(4�1(4�1(4� � �:�1(4�1(4�1(4à8(4á �
�:�1(4� � �:�1(4�1(4à1(4á � �:�1(4�1(4�1(4à8(4� �
�:�1(4� � �:�1(4�1(4à1(4� � �:�1(4�1(4�1(4á8(4� �
�:�1(4á � �:�1(4�1(4á1(4� � �:�1(4�1(4à1(4á8(4� �
�^�7(4� � �:�1(*�7(4�1(4à � �:�1(*�7(4�1(4à1(4� �

�:�1(*�7(4�1(4� � �:�1(*�7(4�1(4à1(4á �
3-element sets �:�1(*�7(4à8(4� �
�:�1(4�1(*� � �:�1(4�1(4à1(4� � 6-element sets
�:�1(4�1(4� � �:�1(*�7(4�1(4à � �:�1(4�1(*�7(4�1(4à8(4á �
�:�1(4�1(4à � �:�1(*�7(4�1(4á � �:�1(4�1(*�7(4�1(4à8(4� �
�:�1(4�1(4á � �:�1(*�7(4à1(4á � �:�1(4�1(*�7(4�1(4á8(4� �
�:�1(4�1(4� � �:�1(4�1(4à1(4á � �:�1(4�1(*�7(4à1(4á8(4� �
�:�1(*�7(4� � �:�1(4�1(4�1(4à8(4á1(4� �
�:�1(*�7(4à �
�:�1(*�7(4� � 7-element set
�:�1(4�1(4à � �:�1(4�1(*�7(4�1(4à8(4á1(4� �
�:�1(4�1(4� �
�:�1(4à1(4� �
�:�1(*�7(4� �
�:�1(*�7(4á �
�:�1(4�1(4à �
�:�1(4�1(4á �
�:�1(4à1(4á �
�^�7(4�1(4à �

Table A.2: An enumeration of the 62 valid curvature-type subsets

Appendix B

Constructing atomic TOGs

In this appendix, we first describe how an atomic TOG is constructed from a pair of I-I and I-P-I

tables, and then we provide a construction algorithm.

B.1 Discussion

As an example of TOG construction, we will use the I-I and I-P-I tables for level 2 of the

atomic hierarchy and consider how a corresponding graph may be specified from them.

For convenience, the level-2 tables are reproduced in Table B.1.

We construct the TOG in two stages. In the first stage, using the I-I table, nodes are

created for the interval atoms and connected together. In the second stage, using the I-P-I

table, nodes are created for the point atoms and then connected to the appropriate inter-

val nodes. Recall that a point atom can only be present in between two interval atoms.

Consequently, there will be no edges in the graph that directly connect one point atom to

another. Figure B.1 shows the result of the first stage using the I-I ; table. One node is cre-

ated for each of the three interval atoms and the nodes are connected together according to

the four ticks present in the table. For the second stage, the simplest strategy is to create a

new graph node for each occurrence of a point atom in a cell of the I-P-I table. Consulting

I-P-I ; , then, we would need to create four nodes for � , eight for � O , nine each for ��" and

223

Appendix B. Constructing atomic TOGs 224

� � , and five each for ��� and ��! . In total, the TOG would consist of 43 nodes (forty for

the six point atoms and three for the three interval atoms). To indicate the nature of the

resulting graph, Figure B.2(a) shows the connected interval nodes together with the eight

nodes for � O , and Figure B.2(b) shows the interval nodes along with the four nodes repre-

senting � . In each case, the point nodes are connected to the interval nodes according to

the occurrences of the point atoms in the I-P-I ; table.

� � �
� ±
� ± ±
� ±

� � �

�
� � O
�	" �	�
���

� O
��" ���
�#�

� � O
�	" �	�
��� ��!

�
� O
�	" �	�
��� ��" ���

� O
�	" �	�
��!

�
� �dO
�	" �	�
� � � !

�3O
��" ���
� !

� �dO
�	" �	�
� !

Table B.1: I-I and I-P-I tables for the level-2 atoms and kink tokens

P NZ

Figure B.1: Connected TOG nodes for the interval atoms of level 2

The graphs in Figure B.2 can be regarded as non-deterministic because, in each graph,

more than one node representing the point atom is reachable from each of the interval

nodes. In graph (b), for example, we can go from node � to either of two � nodes, one of

which takes us back to � and the other of which takes us to � . A non-deterministic TOG

leads to inefficiency in the parsing of token strings. In the present case, consider the string

� � � . If we scan the string from left to right, then when we reach � we need to either look

Appendix B. Constructing atomic TOGs 225

ahead to see which � we have encountered, or we may need to backtrack if we choose the

”wrong” one. A parse using graph (a) is potentially even more inefficient, since its � and

� interval nodes are each connected to three different � O nodes.

By inspecting the four � nodes of graph (b) we can deduce that, in fact, only one node is

required for the � point atom. The reason for this is that an interval atom that immediately

precedes � does not constrain the choice of interval atoms that may immediately follow

� . If we call the interval that precedes a point the leading context of the point, and the

interval that follows it the trailing context, then the reason � requires only one node is

that its leading and trailing contexts are independent.1 In contrast, the eight nodes for �RO
cannot be replaced by just one node, because the leading and trailing contexts of �EO are

not independent. Specifically, if the leading context is � , then the only possibilities for the

trailing context are � and � (i.e., � is not allowed), whereas, if the leading context is either

of � or � , then the trailing context can be � , � , or � . It is not possible to enforce these

dependencies using a single node.

(a)

P N

Uc Uc Uc Uc

UcUcUcUc

Z

(b)

P NZ

Z Z Z

Z

Figure B.2: Level-2 partial TOGs incorporating the ��O and � point atoms

In order to determine how many nodes are required for a given point atom, and to

ensure that the graph remains deterministic, we need to take a closer look at the leading
1Context independence also accounts for the fact that interval atoms only require one node in an atomic

TOG.

Appendix B. Constructing atomic TOGs 226

and trailing contexts of the atom. Consider, first, the point atom � . Each occurrence of

� in I-P-I ; is specified by a context pair,
¨ �G(ok © , where � is a leading context of � and k is

a trailing context. For � , we have the pairs
¨ � (4� © , ¨ � (4� © , ¨ � (4� © , and

¨ � (4� © . There are

two distinct leading contexts (� and �) and two distinct trailing contexts (also � and �).

There are four pairs in all and, importantly, each one accounts for a particular permutation

of the possible leading and trailing contexts. As the number of context pairs equals the

number of permutations, we deduce that the leading and trailing contexts of � are indeed

independent, and that, therefore, only one node is required for � . Now let’s consider �EO .
We extract the following eight context pairs:

¨ � (4� © (¨ � (*� © (¨ � (4� © (¨ � (4� © (¨ � (4� © (¨ � (4� © (¨ � (*� © (¨ � (4� ©

There are three distinct leading contexts (� , � , and �) and three distinct trailing contexts

(also � , � , and �). This time, the number of pairs is not equal to the number of permutations

of the distinct leading and trailing contexts (�C*¤ ½��8½). The ”missing” context pair is
¨ � (*� © .

We have established, therefore, that more than one node is required for � O . Now we need

to decide exactly how many nodes are required, and how each node is related to the set

of context pairs. We can think of each node in the graph representing a point atom as

being associated with a subset of the context pairs of the atom. For point atoms having

a single node, the full set of context pairs is associated with the node. To ensure that the

graph is deterministic, context pairs that have the same leading context must be associated

with the same node. Our first step, therefore, is to partition the set of context pairs into

a number of subsets, such that each subset contains all of the context pairs that share a

particular leading context. For � O , then, we get the three subsets � ¨ � (4� © (¨ � (*� © (¨ � (4� © � ,
� ¨ � (4� © (¨ � (4� © � , and � ¨ � (4� © (¨ � (*� © (¨ � (4� © � . We could now create three nodes for �RO , one

per subset. Inspection of the subsets, however, reveals that the first and third subsets can

be combined, since they share the same trailing contexts. Therefore, only two nodes are

required for �
O , one being associated with � ¨ � (4� © (¨ � (*� © (¨ � (4� © (¨ � (4� © (¨ � (*� © (¨ � (4� © � and

Appendix B. Constructing atomic TOGs 227

the other with � ¨ � (4� © (¨ � (4� © � . The final result is shown in Figure B.3. In the next section

we formalise the procedure we have described in this section, giving an algorithm that

constructs a deterministic (and minimal2) atomic TOG from the I-I and I-P-I tables for a

given level of the atomic hierarchy. The full atomic TOGs for levels 2 and 3 are given in

Chapter 4, as Figures 4.4 and 4.5 respectively.

P N

Uc

Uc

Z

Figure B.3: Deterministic Level-2 partial TOG incorporating ��O

B.2 Construction algorithm

The construction algorithm, which we will present shortly, makes use of an algorithm for

partitioning a set of context pairs, according to the procedure described in the last section,

i.e., grouping the pairs according to their leading contexts, and then combining those sets

of pairs that share the same trailing contexts. Algorithm B.1 formalises the partitioning

procedure. The functions �&�@�^v and kI�@�)v return, respectively, the leading and trailing ele-

ments of a context pair. To illustrate the steps of the algorithm, consider the kink token �©! .

Consulting I-P-I ; , we have the following set,
�

, of context pairs for � ! :

¨ � (4� © (¨ � (4� © (¨ � (4� © (¨ � (*� © (¨ � (4� ©

Step
>

initialises the result set, < . Step � creates a number of sets of trailing contexts,
2In terms of the number of nodes and the number of edges.

Appendix B. Constructing atomic TOGs 228

each of which is associated with a particular leading context. We get
V
� ¤§�:� � ,

V
� ¤§�:� � ,

and
V
� ¤ �:� (*� (4� � . In step

Ý
, sets of context pairs are added to the result set < , as single

elements (step ½ � ¸ ; note the extra pair of curly brackets). Each
V
� is considered in turn:

� V � : zq¤§�:� (*� � (�< ¤§�R� ¨ � (4� © (¨ � (4� © �R�
� V � : zq¤§�:� (*� � (�<ÿ¤§�R� ¨ � (4� © (¨ � (4� © �R�
� V � : zq¤§�:� � (=<ÿ¤ �R� ¨ � (4� © (¨ � (4� © � (b� ¨ � (4� © (¨ � (*� © (¨ � (4� © �R�
The final step of the algorithm returns <¿¤µ�R� ¨ � (4� © (¨ � (4� © � (>� ¨ � (4� © (¨ � (*� © (¨ � (4� © �R�

for the set of context pairs,
�

, of �:! . Since è <ãè�¤ ¸ , we know that two nodes are required

for ��! in the atomic TOG; one node is created per element of < .

Input:
�

(set of context pairs)
Output: < (a partition of

�
)

> <Ù@¼� � A� for each ø!p � do
¸ � ´ VVc g º ,ed Bgf @ �bkG�@�^v	%y��p � +9è)�&�@�^v	%y�c+R¤ �&�@�^v	% ø^+ � AÝ

for each
V
� do

½ � ´ z?@¼�b� � Ò���[°è VVh ¤ V � � A
½ � ¸ <Ù@0<1ÒÓ�R�dø�p � è��&�@�)v	% ø=+9p«z �R� Ai

return <cA
Algorithm B.1: Partitioning a set of context pairs

The full TOG construction procedure is formalised as Algorithm B.2. During steps
>

and � , nodes are created for each interval atom at level û (step ´ � ´) and connected together

according to the contents of I-P-I ú (step ¸ � ´). A node created for atom � is denoted by

r %y�c+ . For ûÓ¤¦¸ , after step � of the algorithm the TOG is the graph shown in Figure B.1.

The remainder of the algorithm is concerned with the creation of nodes for the point atoms

and the connections involving such nodes (step
Ý

). Each point atom, . , in < ú is considered

Appendix B. Constructing atomic TOGs 229

in turn. First, in steps ½ � ´ through to ½ � ¸ � ´ , the set of context pairs for . ,
�

, is established,

by considering the occurrences of . in the I-P-I ú table. Next, in step ½ � ½ , � is partitioned

according to Algorithm B.1, with the result returned as set j . New nodes are then created

for each element, $, of j (step ½ � ² � ¸) and each is connected to the appropriate existing in-

terval nodes, according to the leading and trailing elements of the context pairs contained

in $ (steps ½ � ² � ½ � ´ and ½ � ² � ½ � ¸).
Input: û (atomic level)
Output: An atomic TOG for level û of the atomic hierarchy

>
for each W�p�; ú do

´ � ´ create r %YWG+2A� for each
¨ �3(oz © p?; ú �?; ú do

¸ � ´ if I-I ú %y�d(oz~+�¤ ± then connect r %y�c+ to r %yz~+2AÝ
for each .�pC< ú do

½ � ´ � @ � � A
½ � ¸ for each

¨ �3(oz © p?; ú �?; ú do
½ � ¸ � ´ if I-P-I ú %y�d(oz~+ contains . then

� @ � Ò�� ¨ �3(oz © � A
½ � ½ jÚ@÷.<Ô � k�W5k�W£�)v	% � +2A
½ � � h @ Ê A
½ � ² for each $»p!j do
½ � ² � ´ h�@Dh Å ´ÜA
½ � ² � ¸ create rUk�%6.c+2A
½ � ² � ½ for each ��pB$ do
½ � ² � ½ � ´ connect rÈ%5�&�@�^v	%&�K+o+ to rUk�%6.>+2A
½ � ² � ½ � ¸ connect r k %6.>+ to r %ykI���^v	%&�4+o+2A

Algorithm B.2: Constructing an atomic TOG from a pair of I-I and I-P-I tables

Appendix C

Specifications for Rosin’s codons

Rosin (1993) has developed an extensive set of contour codons for representing curves. The set

includes Hoffman and Richards’ original codons, together with a large number of additional codons

that allow straight lines, cusps, and open curves to be represented. In this appendix, we provide

complex-token specifications for each of Rosin’s codons.

All of the codons in Rosin’s extended set can be specified as complex tokens. The

specifications are given in Tables C.1 to C.6, according to the order they are presented in

(Rosin 1993). Rosin’s set includes Hoffman and Richards’ original set of codons (Table C.1),

additional codons required to adjoin straight lines (Table C.2), codons that allow open

curves to be represented (Tables C.3 and C.4), and codons that allow angles and cusps to

be represented (Tables C.5 and C.6).

230

Appendix C. Specifications for Rosin’s codons 231

¬ ` ¤ �	� _ \@� ` � _ � a]:� _ �
¬ a ¤ �	� _ \@� ` � _ � a]:� _ �
­ ` ¤ �	� _ \@� ` � _ � a � a � a]:� _ �
­^a ¤ �	�'_�\@�R` �>`ã�c` �<_R�3a]:�<_ �
® ¤ �	�'_�\@�R` �>`ã�c` �<_R�3a �
a$��a]:�'_ �
Ï ¤ ��\Z�>_] �

Table C.1: Hoffman and Richards’ original set of codons

� ` ¤ �	� _ \@� ` � _ � a � _] �
�9aÁ¤ �ã\Z�c_ �<` �<_R�ba]:�<_ �Î `µ¤ �	�
_�\@�R` �>`ã�c` �ý_R�3a �c_] �Î aÁ¤ �ã\Z�c_ �<` �<_R�ba �daq��a]:�'_ �
x ¤ �ã\Z�c_ �<` �<_R�ba �c_] �
w `Û¤ �	�
�\@�R` �c] �
w a¦¤ �ã\Z�c_ ��a]:�
_ �

Table C.2: Codons for adjoining straight lines

¬A�¦¤ �	�'_	\@�R` �
_R��a]�L �
­4�¦¤ �	�ý_�\@�<` �<_R�ba �daq��a]�L �
­=t ¤ �	�ý_�\@�<` �<_R�ba]�L �
­KS ¤ �	�ý_�\@�<`]�L �
®A�¦¤ �	� _ \@� ` � ` � ` � _ � a � a � a]�L �
®¶t ¤ �	� _ \@� ` � ` � ` � _ � a]�L �
®=S ¤ �	� _ \@� ` � ` � `]�L �
®=u ¤ �ã\@� a � _ � `]�L �
|~�â¤ �ã\Z�c_ �c` �ý_R�3a]�L �
|<t�¤ �ã\Z�c_ �c` �ý_R�3a �daq�	a]�L �
|hS�¤ �ã\Z�c_ �c`]�L �
|hu�¤ �ã\Z�c_ ��a]�L �

Table C.3: Codons for representing the ends of open curves

Appendix C. Specifications for Rosin’s codons 232

�A� ¤ �ÀL�\@� ` � _ � a]�L ��{tÀ¤ �ÀL�\@�<` �<_R�ba �daq��a]�L ��:S ¤ �ÀL�\@�'` �b`��c` �ý_R�3a]�L ��:u ¤ �ÀL�\@�'` �b`��c` �ý_R�3a �daq��a]�L ��=Y§¤ �ÀL�\@�'` �'_R��a]�L ��¡' ¤ �ÀL�\@�'` �b`��c`]�L ���[¤ �ÀL�\@�ba �daq��a]�L �
Table C.4: Codons for representing curves with no curvature minima

ÝE� ¤ �	� _ \@� `]:� � (b� _ \@� `]:�#! �
ÝNt ¤ �	� _ \@� `]:� � (3� _ \@� `]:�#! �
Ý�S¼¤ �	� _ \@� ` � _ � a]:� � (b� _ \@� ` � _ � a]:��! �
Ý�u¼¤ �	� _ \@� ` � ` � ` � _ � a]:� � (3� _ \@� ` � ` � ` � _ � a]:��! �
Ý�Y¼¤ �	�'_�\@�'` �'_R��a]:�	�'(b�'_�\@�R` �'_R��a]:� ! �
Ý#'Ì¤ �ã\Z�c_]:�	�'(�\Z�c_]:� ! �
Ý	[Ë¤ �ÀLP\@�c`]:� � (]LP\@�c`]:�#!R(®LP\@�3a]:� � (®LQ\@�3a]:��! �
ÝG� ¤ �ÀLP\@�R`]:� � (®LQ\@�R`]:��!R(®LQ\@��a]:� � (®LQ\@��a]:��! �
Ý.� ¤ �	� � \@�c` �ý_'�3a]:� � (b� � \@�<` �<_'�ba]:��!
(d�#!°\@�c` �<_R�3a]:� � (3��!q\@�c` �ý_R�3a]:�#! �
Ý<� ¤ �	� " \@�c` �ý_'�3a]:� " (b� " \@�<` �<_'�ba]:���
(d�#�°\@�c` �<_R�3a]:� " (3���q\@�c` �ý_R�3a]:�#� �
ÝeS ¤ �	� " \@� ` � _ � a]:� � (b� " \@� ` � _ � a]:��!
(d�#�°\@� ` � _ � a]:� � (3���q\@� ` � _ � a]:�#! �
ÝNl ¤ �	� � \@� ` � _ � a]:� " (b� � \@� ` � _ � a]:���
(d�#!°\@� ` � _ � a]:� " (3��!q\@� ` � _ � a]:�#� �
ÝN� ¤ �	� � \@� ` � _ � a]�L�(b��!q\@� ` � _ � a]�L �
ÝN� ¤ �	� � \@� ` � _ � a � a � a]�Lý(b�#!°\@� ` � _ � a � a � a]�L �
Ý�e¼¤ �	���°\@�c` �ý_'�3a �c_]�(3� ! \@�c` �ý_R�3a �c_] �
ÝNm ¤ �	���°\@�R` �'_R��a]�L�(b� ! \@�R` �'_R��a]�L �

Table C.5: Codons for representing convex angles and cusps

Appendix C. Specifications for Rosin’s codons 233

l �é¤ �	�<_�\@�c`]:� " (b�<_�\@�<`]:��� �l t ¤ �	�'_	\@�R`]:� " (b�
�\@�R`]:��� �l SË¤ �	�<�\@�c` �ý_R�3a]:� " (b�<_�\@�<` �<_'�ba]:��� �l uË¤ �	� _ \@� ` � ` � ` � _ � a]:� " (3� _ \@� ` � ` � ` � _ � a]:��� �l Y ¤ �	� _ \@� ` � _ � a]:� " (3� _ \@� ` � _ � a]:��� �l 'é¤ �«\Z� _]:� " (�\Z� _]:��� �l [Ì¤ �ÀL�\@� `]:� " (]LP\@� `]:���R(]LP\@� a]:� " (®LP\@� a]:�#� �l � ¤ �ÀL�\@�'`]:�	"R(®LQ\@�R`]:� � (®LQ\@��a]:�	"R(®LQ\@��a]:� � �l � ¤ �	�	�°\@�R` �
_R��a]:�	�R(b���°\@�R` �'_R�	a]:� ! (b� ! \@�R` �'_R��a]:�	�R(3� ! \@�R` �'_R��a]:� ! �l � ¤ �	� " \@�R` �
_R��a]:� " (b� " \@�R` �'_R�	a]:���R(b�#�°\@�R` �'_R��a]:� " (3���q\@�R` �'_R��a]:�#� �l S ¤ �	� " \@�R` �
_R��a]:� � (b� " \@�R` �'_R�	a]:��!R(b�#�°\@�R` �'_R��a]:� � (3���q\@�R` �'_R��a]:�#! �l l ¤ �	� � \@�R` �
_R��a]:� " (b� � \@�R` �'_R�	a]:���R(b�#!°\@�R` �'_R��a]:� " (3��!q\@�R` �'_R��a]:�#� �l � ¤ �	� " \@�<` �<_R�3a]�Lý(b�#�°\@�c` �ý_'�3a]�L �l � ¤ �	� " \@� ` � _ � a � a � a]�L�(3���q\@� ` � _ � a � a � a]�L �l e ¤ �	� " \@� ` � _ � a � _]�(d�#�°\@� ` � _ � a � _] �l m ¤ �	� " \@� ` � _ � a]�L�(b���°\@� ` � _ � a]�L �
Table C.6: Codons for representing concave angles and cusps

Bibliography

Allen, J. F. (1984), ‘Towards a general theory of action and time’, Artificial Intelligence

23, 123–154.

Ballard, D. H. (1981), ‘Strip trees: A hierarchical representation for curves’, Communications

of the ACM 24(5), 310–321.

Ballard, D. H. & Brown, C. M. (1982), Computer Vision, Prentice-Hall, Inc.

Biederman, I. (1987), ‘Recognition-by-components: A theory of human image understand-

ing’, Psychological Review 94(2), 115–147.

Biederman, I. (1988), Aspects and extensions of a theory of human image understanding,

in Z. Pylyshyn, ed., ‘Computational processes in human vision: An interdisciplinary

perspective’, Norwood, NJ: Ablex, pp. 370–428.

Blum, H. & Nagel, R. N. (1978), ‘Shape description using weighted symmetric axis fea-

tures’, Pattern Recognition 10, 167–180.

Boyle, R. D. & Thomas, R. C. (1988), Computer Vision: A First Course, Blackwell Scientific

Publications.

Brady, M. (1983), Criteria for representations of shape, in J. Beck, B. Hope & A. Rosenfeld,

eds, ‘Human and machine vision’, Academic Press, Inc., pp. 39–84.

Brady, M. & Asada, H. (1984), ‘Smoothed local symmetries and their implementation’, The

International Journal of Robotics Research 3(3), 36–61.

234

BIBLIOGRAPHY 235

Chase, S. C. (1989), ‘Shapes and shape grammars: from mathematical model to computer

implementation’, Environment and planning B: Planning and Design 16, 215–242.

Chung, J.-M. & Ohnishi, N. (1997), Chain of circles for matching and recognition of planar

shapes, in ‘Proceedings of 15th IJCAI’, Vol. 2, Morgan Kaufmann Publishers, Inc.,

pp. 1482–1487.

Cinque, L. & Lombardi, L. (1995), ‘Shape description and recognition by a multiresolution

approach’, Image and Vision Computing 13, 599–607.

Clementini, E. & Felice, P. D. (1997), ‘A global framework for qualitative shape description’,

GeoInformatica 1, 11–27.

Cohn, A. G. (1995), A hierarchical representation of qualitative shape based on connection

and convexity, in A. U. Frank & W. Kuhn, eds, ‘Spatial Information Theory: A The-

oretical Basis for GIS’, Vol. 988 of Lecture Notes in Computer Science, Springer-Verlag,

pp. 311–326.

Cohn, A. G. (1997), Qualitative spatial representation and reasoning techniques, in

G. Brewka, C. Habel & B. Nebel, eds, ‘Proceedings of KI-97’, Vol. 1303 of LNAI,

Springer-Verlag, pp. 1–30.

Forbus, K. D. (1990), Qualitative physics: Past, present, and future, in D. S. Weld &

J. de Kleer, eds, ‘Readings in Qualitative Reasoning about Physical Systems’, Mor-

gan Kaufmann Publishers, Inc., pp. 11–39.

Freeman, H. (1974), ‘Computer processing of line-drawing images’, Computing Surveys

6(1), 57–97.

Freeman, H. (1978), ‘Shape description via the use of critical points’, Pattern Recognition

10, 159–166.

BIBLIOGRAPHY 236

Freksa, C. & Röhrig, R. (1993), Dimensions of qualitative spatial reasoning, in N. P. Car-

reté & M. G. Singh, eds, ‘Qualitative Reasoning and Decision Technologies’, CIMNE,

pp. 483–492.

Galton, A. P. (2000), Qualitative Spatial Change, Oxford University Press.

Galton, A. P. & Meathrel, R. C. (1999), Qualitative outline theory, in T. Dean, ed., ‘Proceed-

ings of 16th IJCAI’, Vol. 2, Morgan Kaufmann Publishers, Inc., pp. 1061–1066.

Hayes, P. J. (1985), The second naive physics manifesto, in J. R. Hobbs & R. C. Moore,

eds, ‘Formal Theories of the Commonsense World’, Ablex Publishing Corporation,

Norwood, NJ, pp. 1–36.

Hayes, P. J. & Leyton, M. (1989), Processes at discontinuities, in ‘Proceedings of 11th IJCAI’,

Vol. 2, Morgan Kaufmann Publishers, Inc., pp. 1267–1272.

Hernández, D. (1994), Qualitative Representation of Spatial Knowledge, Vol. 804 of Lecture

Notes in Artificial Intelligence, Springer-Verlag.

Hernández, D., Clementini, E. & Felice, P. D. (1995), Qualitative distances, in A. U. Frank

& W. Kuhn, eds, ‘Spatial Information Theory: A Theoretical Basis for GIS’, Vol. 988 of

Lecture Notes in Computer Science, Springer-Verlag, pp. 45–57.

Herskovits, A. (1997), Language, spatial cognition, and vision, in O. Stock, ed., ‘Spatial and

Temporal Reasoning’, Kluwer Academic Publishers, pp. 155–202.

Hoffman, D. D. & Richards, W. A. (1982), Representing smooth plane curves for recogni-

tion: implications for figure-ground reversal, in ‘Proceedings of AAAI-82’, American

Association for Artificial Intelligence, pp. 5–8.

Hoffman, D. D. & Richards, W. A. (1984), ‘Parts of recognition’, Cognition 18, 65–96.

Hoffman, D. D. & Singh, M. (1997), ‘Salience of visual parts’, Cognition 63(1), 29–78.

BIBLIOGRAPHY 237

Karinthi, R. R. & Nau, D. S. (1989), Using a feature algebra for reasoning about geometric

feature interactions, in ‘Proceedings of 11th IJCAI’, Vol. 2, Morgan Kaufmann Pub-

lishers, Inc., pp. 1219–1224.

Kulpa, Z. (1994), ‘Diagrammatic representation and reasoning’, Machine Graphics & Vision

3(1/2), 77–103.

Latecki, L. & Röhrig, R. (1993), Orientation and qualitative angle for spatial reasoning,

in R. Bajcsy, ed., ‘Proceedings of 13th IJCAI’, Morgan Kaufmann Publishers, Inc.,

pp. 1544–1549.

Lee, D. T. (1982), ‘Medial axis transformation of a planar shape’, IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 4(4), 363–369.

Leyton, M. (1988), ‘A process-grammar for shape’, Artificial Intelligence 34, 213–247.

Leyton, M. (1989), ‘Inferring causal history from shape’, Cognitive Science 13, 357–387.

Marr, D. & Nishihara, H. K. (1978), ‘Representation and recognition of the spatial organi-

zation of three-dimensional shapes’, Proceedings of the Royal Society of London, Series B

200, 269–294.

Meathrel, R. C. & Galton, A. P. (2000), Qualitative representation of planar outlines, in

W. Horn, ed., ‘Proceedings of 14th ECAI’, IOS Press, pp. 224–228.

Meathrel, R. C. & Galton, A. P. (2001), A hierarchy of boundary-based shape descrip-

tors, in B. Nebel, ed., ‘Proceedings of 17th IJCAI’, Morgan Kaufmann Publishers, Inc.,

pp. 1359–1364.

Mokhtarian, F. & Mackworth, A. (1986), ‘Scale-based description and recognition of pla-

nar curves and two-dimensional shapes’, IEEE Transactions on Pattern Analysis and

Machine Intelligence 8(1), 34–43.

BIBLIOGRAPHY 238

Mokhtarian, F., Abbasi, S. & Kittler, J. (1996), ‘Efficient and robust retrieval by shape

content through curvature scale space’. Proc. International Workshop on Image

DataBases and MultiMedia Search.

Piazzalunga, U. & Fitzhorn, P. (1998), ‘Note on a three-dimensional shape grammar inter-

preter’, Environment and planning B: Planning and Design 25, 11–30.

Pizer, S. M., Oliver, W. R. & Bloomberg, S. H. (1987), ‘Hierarchical shape description via

the multiresolution symmetric axis transform’, IEEE Transactions on Pattern Analysis

and Machine Intelligence 9(4), 505–511.

Pratt, I. (1999), ‘Shape representation using fourier coefficients of the sinusoidal transform’,

Journal of Mathematical Imaging and Vision 10, 221–235.

Prusinkiewicz, P. & Lindenmayer, A. (1990), The Algorithmic Beauty of Plants, Springer-

Verlag.

Randell, D. A., Cui, Z. & Cohn, A. G. (1992), A spatial logic based on regions and connec-

tion, in ‘Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning’, pp. 165–

176. Cambridge MA, Oct. 1992.

Richards, W. & Hoffman, D. D. (1987), Codon constraints on closed 2D shapes, in M. A. Fis-

chler & O. Firschein, eds, ‘Readings in Computer Vision: Issues, Problems, Principles,

and Paradigms’, Morgan Kaufmann Publishers, Inc., pp. 700–708.

Richards, W., Dawson, B. & Whittington, D. (1988), Encoding contour shape by curvature

extrema, in W. Richards, ed., ‘Natural Computation’, The MIT Press, pp. 83–98.

Rosin, P. L. (1993), ‘Multiscale representation and matching of curves using codons’,

CVGIP: Graphical Models and Image Processing 55(4), 286–310.

Rozenberg, G. & Salomaa, A. (1980), The Mathematical Theory of L Systems, Academic Press.

Saund, E. (1992), ‘Putting knowledge into a visual shape representation’, Artificial Intelli-

gence 54, 71–119.

BIBLIOGRAPHY 239

Schlieder, C. (1996), Qualitative shape representation, in P. A. Burrough & A. U. Frank,

eds, ‘Geographic Objects with Indeterminate Boundaries’, London: Taylor & Francis,

pp. 123–140.

Shoham, Y. (1985), Naive kinematics: one aspect of shape, in ‘Proceedings of 9th IJCAI’,

Vol. 1, Morgan Kaufmann Publishers, Inc., pp. 436–442.

Stiny, G. (1980), ‘Kindergarten grammars: designing with froebel’s building gifts’, Envi-

ronment and planning B: Planning and Design 7, 409–462.

Weld, D. S. & de Kleer, J., eds (1990), Readings in Qualitative Reasoning about Physical Systems,

Morgan Kaufmann Publishers, Inc.

Witkin, A. P. (1983), Scale-space filtering, in A. Bundy, ed., ‘Proceedings of 8th IJCAI’,

Vol. 2, pp. 1019–1022.

